R. Jegan1, Walter D. Leon-Salas This email address is being protected from spambots. You need JavaScript enabled to view it.2, Miguel A. Vizcardo3, and Mauricio Postigo-Malaga3

1Department of Biomedical Engineering, Karunya Institute of Technology & Sciences, Coimbatore, Tamilnadu, INDIA
2School of Engineering Technology, Purdue University, 401 N. Grant St., West Lafayette, Indiana 47907, USA
3Universidad Nacional de San Agustin de Arequipa, Av. Independencia s/n, Arequipa, PERU


Received: September 28, 2021
Accepted: November 27, 2021
Publication Date: June 11, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.6180/jase.202303_26(3).0010  


Photosynthetically Active Radiation or PAR is the part of the electromagnetic spectrum that drives photosynthesis in plants. Measuring PAR is an important task in farming, plant biology and environmental science. This article reviews the theoretical basis and various practical approaches for measuring PAR. This review also describes the principles of operation and the technology behind different types of PAR sensors. Comparisons between commercially-available PAR sensors and sensors that are in the prototyping stage are provided to give the reader a quick overview of the technologies available for PAR measurement. The aim of this review is threefold: 1) to serve as an introduction to the topic of PAR sensing for researchers new to the field, 2) to provide list of options for readers seeking to use commercially-available PAR sensors and 3) to give the theoretical foundation and technical information to those readers that seek to develop custom PAR sensing solutions.

Keywords: Photosynthetically active radiation, quantum sensor, spectral irradiance, photosynthesis, solar radiation


  1. [1] M. Mõttus, M. Sulev, F. Baret, R. Lopez-Lozano, and A. Reinart. “Photosynthetically active radiation: measurement and modeling”. In: Encyclopedia of sustainability science and technology. 2016, 7902–7931.
  2. [2] G. Ries, G. Buchholz, H. Frohnmeyer, and B. Hohn, (2000) “UV-damage-mediated induction of homologous recombination in Arabidopsis is dependent on photosynthetically active radiation" Proceedings of the National Academy of Sciences 97(24): 13425–13429. DOI: 10.1073/pnas.230251897.
  3. [3] X.-G. Zhu, S. P. Long, and D. R. Ort, (2008) “What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?" Current Opinion in Biotechnology 19(2): 153–159. DOI: 10.1016/j.copbio.2008.02.004.
  4. [4] E. Guertal and C. Elkins, (1996) “Spatial variability of photosynthetically active radiation in a greenhouse" Journal of the American Society for Horticultural Science 121(2): 321–325. DOI: 10.21273/jashs.121.2.321.
  5. [5] A. Ridgwell, J. S. Singarayer, A. M. Hetherington, and P. J. Valdes, (2009) “Tackling regional climate change by leaf albedo bio-geoengineering" Current Biology 19(2): 146–150. DOI: 10.1016/j.cub.2008.12.025.
  6. [6] K. Inada, (1976) “Action spectra for photosynthesis in higher plants" Plant and Cell Physiology 17(2): 355–365.
  7. [7] K. J. McCree, (1971) “The action spectrum, absorptance and quantum yield of photosynthesis in crop plants" Agricultural Meteorology 9: 191–216. DOI: 10.1016/0002-1571(71)90022-7.
  8. [8] C. Barnes, T. Tibbitts, J. Sager, G. Deitzer, D. Bubenheim, G. Koerner, and B. Bugbee, (1993) “Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux" Horticultural Science 28(12): 1197–1200. DOI: 10.21273/hortsci.28.12.1197.
  9. [9] F. Brooks, (1964) “Agricultural needs for special and extensive observations of solar radiation" The Botanical Review 30(2): 263–291. DOI: 10.1007/BF02858604.
  10. [10] I. Al-Helal and A. Abdel-Ghany, (2011) “Measuring and evaluating solar radiative properties of plastic shading nets" Solar Energy Materials and Solar Cells 95(2): 677–683. DOI: 10.1016/j.solmat.2010.09.039.
  11. [11] S. Castellano, G. Russo, and G. S. Mugnozza. “The influence of construction parameters on radiometric performances of agricultural nets”. In: III International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation 718. 2006, 283–290. DOI: 10.17660/ActaHortic. 2006.718.32.
  12. [12] Growace. Why is PAR rating a big deal for indoor grow light systems? 2021.
  13. [13] S. Zhen and B. Bugbee, (2020) “Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation" Plant, cell & Environment 43(5): 1259–1272. DOI: 10.1111/pce.13730.
  14. [14] S. Zhen, M. van Iersel, and B. Bugbee, (2021) “Why far-red photons should be included in the definition of photosynthetic photons and the measurement of horticultural fixture efficacy" Frontiers in Plant Science 12: 1158.
  15. [15] V. Mascoli, L. Bersanini, and R. Croce, (2020) “Far-red absorption and light-use efficiency trade-offs in chlorophyll of photosynthesis" Nature Plants 6(8): 1044–1053. DOI: 10.1038/s41477-020-0718-z.
  16. [16] H. McPherson, (1969) “Photocell-filter combinations for measuring photosynthetically active radiation" Agricultural Meteorology 6(5): 347–356. DOI: 10.1016/0002-1571(69)90026-0.
  17. [17] W. Biggs, A. Edison, J. D. Eastin, K. Brown, J. Maranville, and M. Clegg, (1971) “Photosynthesis light sensor and meter" Ecology 52(1): 125–131.
  18. [18] Y. Mizoguchi, Y. Ohtani, T. Aoshima, A. Hirakata, S. Yuta, S. Takanashi, H. Iwata, and Y. Nakai, (2010) “Comparison of the characteristics of five quantum sensors." Bulletin of the Forestry and Forest Products Research Institute (416): 113–120.
  19. [19] LI-COR. LI-190R and LI-191R Quantum Sensors. 2021.
  20. [20] A. Instruments. SQ-512-SS: amplified 0-2.5 V fullspectrum quantum sensor. 2021.
  21. [21] Kipp and Zonen. PQS1 PAR quantum sensor. 2021.
  22. [22] H. Instruments. QSRED quantum sensor. 2021.
  23. [23] UPRtek. Spectral PAR meter. 2021.
  24. [24] S. System. Sun System PAR meter with remote sensor. 2021.
  25. [25] E. Instruments. ML-020P PAR Sensor. 2021.
  26. [26] Prede. Quantum Sensors. 2021.
  27. [27] I. Sensor. Photosynthetically active radiation sensor type 5.5. 2021.
  28. [28] C. Scientific. Quantum (PAR) sensor. 2021.
  29. [29] J. Rajendran, W. D. Leon-Salas, X. Fan, Y. Zhang, M. A. Vizcardo, and M. Postigo. “On the development of a low-cost Photosynthetically Active Radiation (PAR) sensor”. In: 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2020, 1–5.
  30. [30] R. Muchow and G. Kerven, (1977) “A low-cost instrument for measurement of photosynthetically active radiation in field canopies" Agricultural Meteorology 18(3): 187–195. DOI: 10.1016/0002-1571(77)90036-X.
  31. [31] J.-Y. Pontailler, (1990) “A cheap quantum sensor using a gallium arsenide photodiode" Functional Ecology: 591–596.
  32. [32] C. Federer and C. Tanner, (1966) “Sensors for measuring light available for photosynthesis" Ecology 47(4): 654–657.
  33. [33] V. P. Gutschick, M. H. Barron, D. A. Waechter, and M. A. Wolf, (1985) “Portable monitor for solar radiation that accumulates irradiance histograms for 32 leafmounted sensors" Agricultural and Forest Meteorology 33(4): 281–290. DOI: 10.1016/0168-1923(85)90028-0.
  34. [34] J. M. Aaslyng, E. Rosenqvist, and K. Høgh-Schmidt, (1999) “A sensor for microclimatic measurement of photosynthetically active radiation in a plant canopy" Agricultural and Forest Meteorology 96(4): 189–197. DOI: 10.1016/s0168-1923(99)00057-x.
  35. [35] M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, (2016) “Optical wireless communications" Switzerland: springer: 107–122.
  36. [36] C. Federer and C. Tanner, (1966) “Sensors for measuring light available for photosynthesis" Ecology 47(4): 654–657.
  37. [37] LI-COR. LI-190R and LI-191R quantum sensors. 2021.
  38. [38] T. Instruments. OPAx387 Ultra-High Precision, Zero-Drift, Low-Input-Bias-Current Op Amps. 2021.
  39. [39] LI-COR. Principles of Radiation Measurement. 2021.
  40. [40] J. Ross and M. Sulev, (2000) “Sources of errors in measurements of PAR" Agricultural and Forest Meteorology 100(2-3): 103–125. DOI: 10.1016/S0168-1923(99) 00144-6.
  41. [41] J. Michalsky, L. Harrison, andW. Berkheiser III, (1995) “Cosine response characteristics of some radiometric and photometric sensors" Solar Energy 54(6): 397–402. DOI:10.1016/0038-092X(95)00017-L.
  42. [42] I. Alados, I. Foyo-Moreno, and L. Alados-Arboledas, (1996) “Photosynthetically active radiation: measurements and modelling" Agricultural and Forest Meteorology 78(1-2): 121–131. DOI: 10.1016/0168-1923(95) 02245-7.
  43. [43] L. O. Björn. “Principles and nomenclature for the quantification of light”. In: Photobiology. Springer, 2015, 21–25. DOI: 10.1007/978-1-4939-1468-5_2.
  44. [44] LI-COR. LI-193 spherical underwater quantum sensor. 2021.
  45. [45] LI-COR. Light measurement. 2021.
  46. [46] LI-COR. LI-191R line quantum sensor. 2021.
  47. [47] K. McCree, (1966) “A solarimeter for measuring photosynthetically active radiation" Agricultural Meteorology 3(5-6): 353–366. DOI: 10.1016/0002-1571(66) 90017-3.
  48. [48] A. Ångström and A. Drummond, (1961) “Basic concepts concerning cutoff glass filters used in diation measurements" Journal of the Atmospheric Sciences 18(3): 360–367.
  49. [49] A. Parisi, J. Wong, and C. Randall, (1998) “Simultaneous assessment of photosynthetically active and ultraviolet solar radiation" Agricultural and Forest Meteorology 92(2): 97–103. DOI: 10.1016/S0168-1923(98)00094-X.
  50. [50] L. Palva, E. Garam, S. Palmroth, R. Sepponen, and P. Hari, (1998) “Utilizing a multipoint measuring system of photosynthetically active radiation in photosynthetic studies within canopies" Silva Fennica 32: 311–319.
  51. [51] A. Kutschera and J. J. Lamb, (2018) “Light meter for measuring photosynthetically active radiation" American Journal of Plant Sciences 9(12): 2420.
  52. [52] U. Barı¸s and V. Demir, (2012) “Feasibility of Photosynthetically Active Radiation (PAR) Measurement Using LED and Photodiode" Journal of Agricultural Sciences 18(3): 214–225. DOI: 10.1501/tarimbil_0000001209.
  53. [53] W. D. Leon-Salas, J. Rajendran, M. A. Vizcardo, and M. Postigo-Malaga. “Measuring Photosynthetically Active Radiation with a multi-channel integrated spectral sensor”. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE. 2021, 1–5. DOI: 10.1109/ISCAS51556.2021.9401321.
  54. [54] J. S. B. Valencia, S. Navarro, N. Giraldo, and L. Atehortua, (2014) “Estimation of Photosynthetically Active Radiation (PAR) using a low cost spectrometer" IEEE Latin America Transactions 12(2): 107–111.
  55. [55] Migro. Cheap PAR meter hack – Use a Lux meter to measure PAR accurately. 2021.
  56. [56] H. P. Adamson and I. T. Kruglak. Adaptive Photosynthetically Active Radiation (PAR) sensor with daylight integral (DLI) control system incorporating lumen maintenance. US Patent Application US2019/0320590A1.2019.
  57. [57] D.Wang. Systems and methods for improving a spectral response curve of a photo sensor. US Patent 10,217,779 B2. 2019.
  58. [58] Bickel, W. C, Richardson, and J. E. Sunlight measuring device. 2007.
  59. [59] Webbeking, Victor, Main, Karen, Kepferle, Loyd,Wilson, and L.Wendell. Instrument and method to measure available light energy for photosynthesis. 2007.
  60. [60] Gutschick, V. P, Barron, M. H,Waechter, D. A,Wolf, and M. A. Method and apparatus for measuring solar radiation in a vegetative canopy. 1987.
  61. [61] J. Norman, C. Tanner, and G. Thurtell, (1969) “Photosynthetic light sensor for measurements in plant canopies" Agronomy Journal 61(6): 840–843.
  62. [62] H. R. Barnard, M. C. Findley, and J. Csavina, (2014) “PARduino: a simple and inexpensive device for logging photosynthetically active radiation" Tree Physiology 34(6): 640–645. DOI: 10.1093/treephys/tpu044.
  63. [63] D. Yadav, M. Sumesh, T. Beno, S. Karanth, and G. Sadashivappa, (2018) “Design of Photosynthetically Active Radiation sensor" Examines in Physical Medicine and Rehabilitation 1(5):
  64. [64] F. Woodward and M. Yaqub, (1979) “Integrator and sensors for measuring photosynthetically active radiation and temperature in the field" Journal of Applied Ecology:545–552.
  65. [65] M. A. Martínez, J. M. Andújar, and J. M. Enrique, (2009) “A new and inexpensive pyranometer for the visible spectral range" Sensors 9(6): 4615–4634. DOI: 10.3390/s90604615.
  66. [66] M. Caya, J. Alcantara, J. Carlos, and S. Cereno. “Photosynthetically active radiation (PAR) sensor using an array of light sensors with the integration of data logging for agricultural application”. In: 2018 3rd International Conference on Computer and Communication Systems (ICCCS). IEEE. 2018, 377–381. DOI: 10.1109/CCOMS.2018.8463321.
  67. [67] M. A. Martínez, J. M. Andújar, and J. M. Enrique, (2009) “A new and inexpensive pyranometer for the visible spectral range" Sensors 9(6): 4615–4634. DOI: 10.3390/s90604615.
  68. [68] J. A. Duffie, W. A. Beckman, and N. Blair. Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons, 2020.
  69. [69] A. García-Rodríguez, D. Granados-López, S. García-Rodríguez, M. Díez-Mediavilla, and C. Alonso-Tristán, (2021) “Modelling Photosynthetic Active Radiation (PAR) through meteorological indices under all sky conditions" Agricultural and Forest Meteorology 310: 108627. DOI: 10.1016/j.agrformet.2021.108627.
  70. [70] M. G. Brown, S. Skakun, T. He, and S. Liang, (2020) “Intercomparison of machine-learning methods for estimating surface shortwave and Photosynthetically Active Radiation" Remote Sensing 12(3): 372. DOI: 10.3390/rs12030372.
  71. [71] E. Habyarimana and F. S. Baloch, (2021) “Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields" PloS One 16(3): e0249136. DOI: 10.1371/journal.pone.0249136.