Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

R.G. Ikramov1, A.A. Mamaxanov1, M.A. Nuriddinova1, R.M. Jalolov2, Kh.A. Muminov This email address is being protected from spambots. You need JavaScript enabled to view it.1, and B.Q. Sultonov1

1Namangan Engineering and Technology Institute, 7 Kosonsoy Street, Namangan 160115, Uzbekistan
2Namangan State University, 316 Uychi street, Namangan 160136, Uzbekistan


 

Received: September 17, 2021
Accepted: November 9, 2021
Publication Date: December 22, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202210_25(5).0007  


ABSTRACT


A new method is presented for calculating the interband absorption spectrum for amorphous semiconductors using the Kubo-Greenwood formula in accordance with the Davis-Mott approximation method. It is shown that the calculated spectrum of interband absorption explained the experimental results, and a method is recommended to reduce the indefinite integral in the Kubo-Greenwood formula to a definite integral. It is explained that the boundaries of a definite integral are determined according to the empirical Tauc model, written for the distribution of the density of electronic states in amorphous semiconductors.


Keywords: amorphous semiconductors, interband optical transitions of electrons, interband absorption spectrum, Kubo-Greenwood formula, Davis-Mott approximation method, empirical Tauc model.


REFERENCES


  1. [1] N. Mott and E. Davis. Electronic processes in noncrystalline solids, Clarendon. 1979.
  2. [2] E. Davis and N. Mott, (1970) “Conduction in noncrystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors"Philosophical magazine 22(179): 0903–0922.
  3. [3] Nadjafov.B.., (2016) “Poluchenie gidrogenizirovannix tonkix plenok kremniya ugleroda, dlya izgotovleniya elektronnix priborov" International journal of applied and fundamental research. 764–775.
  4. [4] S. K. O’Leary, (1999) “On the relationship between the distribution of electronic states and the optical absorption spectrum in amorphous semiconductors" Solid state communications 109(9): 589–594.
  5. [5] J. Guerra, L. Montañez, F. De Zela, A.Winnacker, and R. Weingärtner, (2013) “On the origin of the Urbach rule and the Urbach focus" MRS Online Proceedings Library (OPL) 1536: 139–145. DOI: 10.1557/opl.2013.753..
  6. [6] Brodsky. Amorphous Semiconductors. Springer-Verlag.New York, 1985.
  7. [7] S. Zainobidinov, R. Ikramov, R. Zhalalov, and M. Nuritdinova, (2011) “Distribution of electron density of states in allowed bands and interband absorption in amorphous semiconductors" Optics and Spectroscopy 110(5): 762–766. DOI: 10.1134/S0030400X11030271.
  8. [8] N. Bronshtein and K. A. Semendyaev. Handbook of Mathematics for Engineers and Technical University Students [in Russian]. Moscow. 1986.
  9. [9] S. Zaynobidinov, R. Ikramov, and R. Jalalov, (2011) “Urbach energy and the tails of the density of states in amorphous semiconductors" Journal of Applied Spectroscopy 78(2): 223–228. DOI: 10.1007/s10812-011-9450-9.
  10. [10] V. I. Fistul. Introduction to the Physics of Semiconductors [in Russian]. Moscow. 1984.
  11. [11] X.Fritsshe. Amorfniy kremniy I rodstvenniye material. [in Russian]. 1991.
  12. [12] P. A.A. and K. A.V. Teplofiz. Vis. Temp. 2015.
  13. [13] I.S.Grandshteyn. and M.I.Rijik. blitsi integralov, summ, ryadov I proizvdeniy. [in Russian]. .: G.izd.Fiz.-mat.lit.1100. 1963.
  14. [14] R. Ikramov, M. Nuriddinova, and K. Muminov, (2021) “Calculation of the Density of Electronic States in the Valence Band from Experimental Interband Absorption Spectra of Amorphous Semiconductors" Journal of Applied Spectroscopy 88(3): 501–505. DOI:10.1007/s10812-021-01200-9.
  15. [15] J. Tauc, (1970) “Absorption edge and internal electric fields in amorphous semiconductors" Materials Research Bulletin 5(8): 721–729.