Kothandan Suresh1, Harini Sampath1, Nallaperumal Chellammal1, Satish R. Jondhale2, and Chokkalingam Bharatiraja This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, TN, India
2Department of Electronics and Telecommunication, Amrutvahini COE, Sangamner, India


Received: June 16, 2021
Accepted: August 10, 2021
Publication Date: October 1, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.6180/jase.202206_25(3).0004  


This paper proposes an integration of renewable energy sources based on a modular multi-input bidirectional DC/DC buck-boost converter. The proposed four-port converter is realized with a reduced component count and simplified control strategy, which makes the converter more reliable and cost-effective. Also, this converter exhibits bidirectional power flow functionality, making it suitable for charging the battery during regenerative braking of an electric vehicle or hybrid electric vehicle. Photovoltaic (PV) panel, battery, and ultra-capacitor are the three different energy sources for the suggested topology. Dynamic modeling is derived, and the steady-state performance of the converter is well analyzed in MATLAB/Simulink platform. Experimental results obtained from a 100Wprototype model validate the performance of the proposed four-port bidirectional buck/boost (FPB3C) DC/DC converter.

Keywords: DC/DC multi-port converter, battery energy storage system (BESS), ultracapacitor (UC)


  1. [1] S. Dusmez, A. Hasanzadeh, and A. Khaligh, (2014) “Comparative analysis of bidirectional three-level DC–DC converter for automotive applications" IEEE Transactions on Industrial Electronics 62(5): 3305–3315.DOI: 10.1109/TIE.2014.2336605.
  2. [2] F. Akar, Y. Tavlasoglu, E. Ugur, B. Vural, and I. Aksoy, (2015) “A bidirectional nonisolated multi-input DC–DC converter for hybrid energy storage systems in electric vehicles" IEEE Transactions on Vehicular Technology 65(10): 7944–7955. DOI: 10.1109/TVT.2015.2500683.
  3. [3] R. R. Ahrabi, H. Ardi, M. Elmi, and A. Ajami, (2016) “A novel step-up multiinput DC–DC converter for hybrid electric vehicles application" IEEE Transactions on Power Electronics 32(5): 3549–3561. DOI: 10.1109/TPEL.2016.2585044.
  4. [4] F. Kardan, R. Alizadeh, and M. R. Banaei, (2017) “A new three input DC/DC converter for hybrid PV/FC/battery applications" IEEE Journal of Emerging and Selected Topics in Power Electronics 5(4):1771–1778. DOI: 10.1109/JESTPE.2017.2731816.
  5. [5] Y. Li, X. Ruan, D. Yang, F. Liu, and K. T. Chi, (2010) “Synthesis of multiple-input DC/DC converters" IEEE Transactions on Power Electronics 25(9): 2372–2385.DOI: 10.1109/TPEL.2010.2047273.
  6. [6] H. Tao, A. Kotsopoulos, J. L. Duarte, and M. A. Hendrix, (2006) “Family of multiport bidirectional DC–DC converters" IEE Proceedings-Electric Power Applications 153(3): 451–458. DOI: 10.1049/ip-epa:20050362.
  7. [7] Y. Yuanmao and K.W. E. Cheng, (2011) “Level-shifting multiple-input switched-capacitor voltage copier" IEEE transactions on power electronics 27(2): 828–837.DOI: 10.1109/TPEL.2011.2155672.
  8. [8] J. R. Albert and A. A. Stonier, (2020) “Design and development of symmetrical super-lift DC–AC converter using firefly algorithm for solar-photovoltaic applications" IET Circuits, Devices & Systems 14(3): 261–269. DOI: 10.1049/iet-cds.2018.5292.
  9. [9] B. G. Dobbs and P. L. Chapman, (2003) “A multipleinput DC-DC converter topology" IEEE Power Electronics Letters 1(1): 6–9. DOI: 10.1109/LPEL.2003.813481.
  10. [10] H. Matsuo,W. Lin, F. Kurokawa, T. Shigemizu, and N. Watanabe, (2004) “Characteristics of the multiple-input DC-DC converter" IEEE Transactions on Industrial Electronics 51(3): 625–631. DOI: 10.1109/TIE.2004.825362.
  11. [11] A. Khaligh, J. Cao, and Y.-J. Lee, (2009) “A multipleinput DC–DC converter topology" IEEE Transactions on power electronics 24(3): 862–868. DOI: 10.1109/TPEL.2008.2009308.
  12. [12] Q. Wang, J. Zhang, X. Ruan, and K. Jin, (2011) “Isolated single primary winding multiple-input converters" IEEE transactions on power electronics 26(12):3435–3442. DOI: 10.1109/TPEL.2010.2103958.
  13. [13] L. Solero, A. Lidozzi, and J. A. Pomilio, (2005) “Design of multiple-input power converter for hybrid vehicles" IEEE transactions on power electronics 20(5): 1007–1016. DOI: 10.1109/TPEL.2005.854020.
  14. [14] M. Marchesoni and C. Vacca, (2007) “New DC–DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles" IEEE Transactions on Power Electronics 22(1): 301–308. DOI: 10.1109/TPEL.2006.886650.
  15. [15] S. Han and D. Divan. “Bi-directional DC/DC converters for plug-in hybrid electric vehicle (PHEV) applications”. In: 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition. IEEE.2008, 784–789. DOI: 10.1109/APEC.2008.4522810.
  16. [16] A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, (2010) “Multi-output DC–DC converters based on diode-clamped converters configuration: topology and control strategy" IET power electronics 3(2): 197–208. DOI: 10.1049/iet-pel.2008.0341.
  17. [17] H. Behjati and A. Davoudi. “A multi-port dc-dc converter with independent outputs for vehicular applications”. In: 2011 IEEE Vehicle Power and Propulsion Conference. IEEE. 2011, 1–5. DOI: 10.1109/VPPC.2011.6042983.
  18. [18] K. P. Yalamanchili and M. Ferdowsi. “Review of multiple input DC-DC converters for electric and hybrid vehicles”. In: 2005 IEEE vehicle power and propulsion conference. IEEE. 2005, 160–163. DOI: 10.1109/VPPC.2005.1554613.
  19. [19] J. Shen, S. Dusmez, and A. Khaligh, (2014) “Optimization of sizing and battery cycle life in battery/ ultracapacitor hybrid energy storage systems for electric vehicle applications" IEEE Transactions on industrial informatics 10(4): 2112–2121. DOI: 10.1109/TII.2014.2334233.
  20. [20] S. Lu, K. A. Corzine, and M. Ferdowsi, (2007) “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles" IEEE transactions on vehicular technology 56(4): 1516–1523. DOI: 10.1109/TVT.2007.896971.
  21. [21] S. Dusmez and A. Khaligh, (2014) “A supervisory power-splitting approach for a new ultracapacitor–battery vehicle deploying two propulsion machines" IEEE Transactions on Industrial Informatics 10(3): 1960–1971.DOI: 10.1109/TII.2014.2299237.
  22. [22] S. Lu, K. A. Corzine, and M. Ferdowsi, (2007) “A unique ultracapacitor direct integration scheme in multilevel motor drives for large vehicle propulsion" IEEE Transactions on Vehicular Technology 56(4): 1506–1515. DOI: 10.1109/TVT.2007.896970.
  23. [23] M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, (2009) “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy" IEEE Transactions on Industrial Electronics 57(2): 587–597. DOI: 10.1109/TIE.2009.2025283.
  24. [24] P. Mulhall, S. M. Lukic, S. G. Wirasingha, Y.-J. Lee, and A. Emadi, (2010) “Solar-assisted electric auto rickshaw three-wheeler" IEEE transactions on vehicular technology 59(5): 2298–2307. DOI: 10.1109/TVT.2010.2045138.
  25. [25] O. Hegazy, R. Barrero, J. Van Mierlo, P. Lataire, N. Omar, and T. Coosemans, (2013) “An advanced power electronics interface for electric vehicles applications" IEEE transactions on power electronics 28(12): 5508–5521. DOI: 10.1109/TPEL.2013.2256469.
  26. [26] S. Danyali, S. H. Hosseini, and G. B. Gharehpetian, (2013) “New extendable single-stage multi-input DC–DC/AC boost converter" IEEE Transactions on power electronics 29(2): 775–788. DOI: 10.1109/TPEL.2013.2256468.
  27. [27] L. Wang, Z. Wang, and H. Li, (2011) “Asymmetrical duty cycle control and decoupled power flow design of a three-port bidirectional DC-DC converter for fuel cell vehicle application" IEEE Transactions on Power Electronics 27(2): 891–904. DOI: 10.1109/TPEL.2011.2160405.
  28. [28] S. Falcones, R. Ayyanar, and X. Mao, (2012) “A DC–DC multiport-converter-based solid-state transformer integrating distributed generation and storage" IEEE Transactions on Power electronics 28(5): 2192–2203.DOI: 10.1109/TPEL.2012.2215965.
  29. [29] Y.-M. Chen, A. Q. Huang, and X. Yu, (2013) “A high step-up three-port DC–DC converter for standalone PV/battery power systems" IEEE Transactions on Power Electronics 28(11): 5049–5062. DOI: 10.1109/TPEL.2013.2242491.
  30. [30] K. Gummi and M. Ferdowsi, (2009) “Double-input dc–dc power electronic converters for electric-drive vehicles—Topology exploration and synthesis using a singlepole triple-throw switch" IEEE Transactions on Industrial Electronics 57(2): 617–623. DOI: 10.1109/TIE.2009.2032762.
  31. [31] J. de Dieu Nguimfack-Ndongmo, G. Kenné, R. Kuate-Fochie, A. F. T. Njomo, and E. M. Nfah, (2021) “Adaptive neuro-synergetic control technique for SEPIC converter in PV systems" International Journal of Dynamics and Control: 1–14. DOI: 10.1007/S40435-021-00808-1.
  32. [32] K. Suresh, N. Chellammal, C. Bharatiraja, P. Sanjeevikumar, F. Blaabjerg, and J. B. H. Nielsen, (2019) “Cost-efficient nonisolated three-port DC-DC converter for EV/HEV applications with energy storage" International Transactions on Electrical Energy Systems 29(10): e12088. DOI: 10.1002/2050-7038.12088.
  33. [33] Y. Sato, M. Uno, and H. Nagata, (2019) “Nonisolated multiport converters based on integration of PWM converter and phase-shift-switched capacitor converter" IEEE Transactions on Power Electronics 35(1): 455–470.DOI: 10.1109/TPEL.2019.2912550.