REFERENCES
- [1] H. A. Taiebat and J. P. Carter, (2000) “Numerical studies of the bearing capacity of shallow foundations on cohesive soil subjected to combined loading" Géotechnique 50(4): 409–418.
- [2] D. Raj and M. Bharathi, (2013) “Bearing Capacity of Shallow Foundation on Slope: A Review" Proc. GGWUIP India: Ludhiana:
- [3] H. T. Eid, (2013) “Bearing capacity and settlement of skirted shallow foundations on sand" International Journal of Geomechanics 13(5): 645–652.
- [4] P. Samui and T. G. Sitharam, (2008) “Least-square support vector machine applied to settlement of shallow foundations on cohesionless soils" International Journal for Numerical and Analytical Methods in Geomechanics 32(17): 2033–2043.
- [5] S. S. Tezcan, A. Keceli, and Z. Ozdemir, (2006) “Allowable bearing capacity of shallow foundations based on shear wave velocity" Geotechnical & Geological Engineering 24(1): 203–218.
- [6] K. Terazaghi, (1965) “Theoretical soil mechanics" John Wiley and Sons:
- [7] A. Vesic, (1975) “Bearing Capacity of Shallow Foundations, Foundation Engineering Handbook, ed.Winterkorn, FS and Fand, HY":
- [8] B. Hansen, (1961) “A general formula for bearing capacity" Danish Geotechnical Institute, Bulletin 11:38–46.
- [9] G. G. Meyerhof, (1963) “Some recent research on the bearing capacity of foundations" Canadian Geotechnical Journal 1(1): 16–26.
- [10] S. M. Gourvenec, C. Vulpe, and T. G. MURTHY, (2014) “A method for predicting the consolidated undrained bearing capacity of shallow foundations" Géotechnique 64(3): 215–225.
- [11] M. Ghavami, M. M. Tamizdoust, and O. Ghasemi-Fare, (2019) “Determination of allowable bearing capacity of shallow foundation using modified hyperbolic stressstrain model" Journal of Applied Geophysics 166: 1–9.
- [12] M. M. Nujid and M. R. Taha, (2014) “A review of bearing capacity of shallow foundation on clay layered soils using numerical method" Electronic Journal Geotechnical Engineering 19: 811–825.
- [13] G. Gandhi. “Study of bearing capacity factors developed from lab. Experiments on shallow footings on cohesionless soils". (phdthesis). 2003.
- [14] A. Azami, S. Pietruszczak, and P. Guo, (2010) “Bearing capacity of shallow foundations in transversely isotropic granular media" International Journal for Numerical and Analytical Methods in Geomechanics 34(8): 771–793.
- [15] S. D. Nielsen, L. B. Ibsen, and B. N. Nielsen, (2016) “Advanced laboratory setup for testing offshore foundations" Geotechnical Testing Journal 39(4): 543–556.
- [16] T. TATSUOKA, (1991) “Progressive failure and particle size effect in bearing capacity of footing on sand" ASCE Geotechnical Special Publication 27: 788–802.
- [17] Y. M. Chew, K. S. Ng, and S. F. Ng, (2015) “The effect of soil variability on the ultimate bearing capacity of shallow foundation" Journal of Engineering Science and Technology 10: 1–13.
- [18] S. A. Ziaee, E. Sadrossadat, A. H. Alavi, and D. M. Shadmehri, (2015) “Explicit formulation of bearing capacity of shallow foundations on rock masses using artificial neural networks: application and supplementary studies" Environmental earth sciences 73(7): 3417–3431.
- [19] M. Omar, K. Hamad, M. Al Suwaidi, and A. Shanableh, (2018) “Developing artificial neural network models to predict allowable bearing capacity and elastic settlement of shallow foundation in Sharjah, United Arab Emirates" Arabian Journal of Geosciences 11(16): 464.
- [20] V. R. Kohestani, M. Vosoghi, M. Hassanlourad, and M. Fallahnia, (2017) “Bearing capacity of shallow foundations on cohesionless soils: A random forest based approach" Civil Engineering Infrastructures Journal 50(1): 35–49.
- [21] A. H. Alavi and E. Sadrossadat, (2016) “New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses" Geoscience Frontiers 7(1): 91–99.
- [22] M. A. Shahin, M. B. Jaksa, and H. R. Maier, (2001) “Artificial neural network applications in geotechnical engineering" Australian geomechanics 36(1): 49–62.
- [23] M. A. Shahin, H. R. Maier, and M. B. Jaksa, (2002) “Predicting settlement of shallow foundations using neural networks" Journal of Geotechnical and Geoenvironmental Engineering 128(9): 785–793.
- [24] H. Shahnazari, M. A. Shahin, and M. A. Tutunchian, (2014) “Evolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils" International journal of civil engineering 12(1): 55–64.
- [25] R. Mohanty and S. K. Das, (2018) “Settlement of shallow foundations on cohesionless soils based on SPT value using multi-objective feature selection" Geotechnical and Geological Engineering 36(6): 3499–3509.
- [26] M. Bagi´nska and P. E. Srokosz, (2019) “The optimal ANN Model for predicting bearing capacity of shallow foundations trained on scarce data" KSCE Journal of Civil Engineering 23(1): 130–137.
- [27] L. Liu, H. Moayedi, A. S. A. Rashid, S. S. A. Rahman, and H. Nguyen, (2020) “Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system" Engineering with Computers 36(1): 421–433.
- [28] A. H. Gandomi, S. M. Tabatabaei, M. H. Moradian, A. Radfar, and A. H. Alavi, (2011) “A new prediction model for the load capacity of castellated steel beams" Journal of Constructional Steel Research 67(7): 1096–1105.
- [29] A. Saha, S. Nama, and S. Ghosh, (2019) “Application of HSOS algorithm on pseudo-dynamic bearing capacity of shallow strip footing along with numerical analysis" International Journal of Geotechnical Engineering: 1–14.
- [30] A. Soleimanbeigi and N. Hataf, (2005) “Predicting ultimate bearing capacity of shallow foundations on reinforced cohesionless soils using artificial neural networks" Geosynthetics International 12(6): 321–332.
- [31] E. Sadrossadat, F. Soltani, S. M. Mousavi, S. M. Marandi, and A. H. Alavi, (2013) “A new design equation for prediction of ultimate bearing capacity of shallow foundation on granular soils" Journal of Civil Engineering and Management 19(sup1): S78–S90.
- [32] P. Pakdel, R. Jamshidi Chenari, and M. Veiskarami, (2019) “An estimate of the bearing capacity of shallow foundations on anisotropic soil by limit equilibrium and soft computing technique" Geomechanics and Geoengineering 14(3): 202–217.
- [33] H. Rezaei, R. Nazir, and E. Momeni, (2016) “Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study" Journal of Zhejiang University-SCIENCE A 17(4): 273–285.
- [34] O. E. David and I. Greental. “Genetic algorithms for evolving deep neural networks”. en. In: [Online; accessed 2020-03-17]. Vancouver, BC, Canada: ACM Press, 2014, 1451–1452. DOI: 10.1145/2598394.2602287.
- [35] R. Zemouri, N. Omri, F. Fnaiech, N. Zerhouni, and N. Fnaiech, (2019) “A new growing pruning deep learning neural network algorithm (GP-DLNN)" Neural Computing and Applications: 1–17.
- [36] T. A. Pham, V. Q. Tran, H.-L. T. Vu, and H.-B. Ly, (2020) “Design deep neural network architecture using a genetic algorithm for estimation of pile bearing capacity" PLOS ONE 15(12): e0243030. DOI: 10.1371/journal. pone.0243030.
- [37] T. A. Pham, V. Q. Tran, and H.-L. T. Vu, (2021) “Evolution of Deep Neural Network Architecture Using Particle Swarm Optimization to Improve the Performance in Determining the Friction Angle of Soil" Mathematical Problems in Engineering 2021: 1–17. DOI: 10.1155/2021/5570945.
- [38] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, (2017) “A survey of deep neural network architectures and their applications" Neurocomputing 234:11–26.
- [39] K. Aljanabi, (2008) “Prediction of Ultimate Bearing Capacity of Shallow Foundations on Cohesionless Soils Using Back Propagation Neural Networks (BPNN)" Iraqi Journal of Civil Engineering IJCE 8th year: 162–176.
- [40] H. Guo, J. Zhou, M. Koopialipoor, D. Jahed Armaghani, and M. M. Tahir, (2021) “Deep neural network and whale optimization algorithm to assess flyrock induced by blasting" Engineering with Computers 37(1): 173–186. DOI: 10.1007/s00366-019-00816-y.
- [41] W. Yong, J. Zhou, D. Jahed Armaghani, M. M. Tahir, R. Tarinejad, B. T. Pham, and V. Van Huynh, (2020) “A new hybrid simulated annealing-based genetic programming technique to predict the ultimate bearing capacity of piles" Engineering with Computers: DOI: 10.1007/s00366-019-00932-9.
- [42] J. Zhou, Y. Qiu, S. Zhu, D. J. Armaghani, C. Li, H. Nguyen, and S. Yagiz, (2021) “Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate" Engineering Applications of Artificial Intelligence 97: 104015. DOI: 10.1016/j.engappai.2020.104015.
- [43] Y. Bengio, (2009) “Learning Deep Architectures for AI" Found. Trends Mach. Learn. 2(1): 1–127. DOI: 10.1561/2200000006.
- [44] A. T. C. Goh, (1995) “Back-propagation neural networks for modeling complex systems" Artificial Intelligence in Engineering 9(3): 143–151. DOI: 10.1016/0954-1810(94)00011-S.
- [45] K. Hornik, (1991) “Approximation capabilities of multilayer feedforward networks" Neural Networks 4(2): 251–257. DOI: 10.1016/0893-6080(91)90009-T.
- [46] J. Bergstra and Y. Bengio, (2012) “Random Search for Hyper-Parameter Optimization" Journal of Machine Learning Research 13(10): 281–305.
- [47] P. Liashchynskyi and P. Liashchynskyi, (2019) “Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS" arXiv:1912.06059 [cs, stat]:
- [48] T. Chai and R. R. Draxler, (2014) “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature" Geoscientific Model Development 7(3): 1247–1250. DOI:10.5194/gmd-7-1247-2014.
- [49] A. Colin Cameron and F. A. G. Windmeijer, (1997) “An R-squared measure of goodness of fit for some common nonlinear regression models" Journal of Econometrics 77(2): 329–342. DOI: 10.1016/S0304-4076(96)01818-0.
- [50] R. A. Peterson, (2000) “A Meta-Analysis of Variance Accounted for and Factor Loadings in Exploratory Factor Analysis" Marketing Letters 11(3): 261–275. DOI: 10.1023/A:1008191211004.
- [51] H. Muhs and K. Weiß. Untersuchung von Grenztragfähigkeit und Setzungsverhalten Flachgegründeter Einzelfundamente im ungleichförmigen nichtbindigen Boden. Berlin: Ernst W. + Sohn Verlag, 1, 1982.
- [52] K. Weiß. Der Einfluß der Fundamentform auf die Grenztragfähigkeit flachgegründeter Fundamente, Untersuchungen ausgef.... von Klaus Weiß: mit 14 Zahlentaf. Ernst, 1970.
- [53] H. Muhs, R. Elmiger, and K. Weiß. Sohlreibung und Grenztragfähigkeit unter lotrecht und schräg belasteten Einzelfundamenten; mit 128 Bildern und 13 Zahlentafeln. Ernst, 1969.
- [54] M. H and W. K, (1973) “Inclined load tests on shallow strip footings" Proceedings of the 8th international conference on soil mechanism and foundation engineering II: 173–9.
- [55] J.-L. Briaud and R. Gibbens, (1999) “Behavior of Five Large Spread Footings in Sand" Journal of Geotechnical and Geoenvironmental Engineering 125(9):787–796. DOI: 10.1061/(ASCE)1090-0241(1999)125:9(787).
- [56] M. Maccarini, (1993) “A comparison of direct shear box tests with triaxial compression tests for a residual soil" Geotechnical and Geological Engineering 11(2): 69–80. DOI: 10.1007/BF00423336.
- [57] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting": 30.
- [58] I. M. Sobol, (2001) “Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates" Mathematics and Computers in Simulation 55(1): 271–280. DOI: 10.1016/S0378-4754(00)00270-6.
- [59] A. Saltelli, (2002) “Making best use of model evaluations to compute sensitivity indices" Computer Physics Communications 145(2): 280–297. DOI: 10.1016/S0010-4655(02)00280-1.