Djarot B. Darmadi This email address is being protected from spambots. You need JavaScript enabled to view it.1, Marco Talice2, Akhmad Fandi Fahrizal3, and Eko Siswanto4

1Joining and Welding Research Group (JWERG), Mechanical Engineering Department, Brawijaya University, Malang – 65148, INDONESIA
2PMSquared Engineering S.r.l.s, 99, Via Sidney Sonnino – 09127 Cagliary, ITALY
3Jln Raya Surabaya – Mojokerto km 44, 61301 Mojokerto, INDONESIA
4Production and Processes Laboratory, Mechanical Engineering Department, Brawijaya University, Malang – 65148, INDONESIA


 

Received: February 14, 2021
Accepted: August 1, 2021
Publication Date: August 29, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202204_25(2).0007  


ABSTRACT


This article discusses the Double Side Friction Stir Welding (DSFSW). The pin length and the rotation direction of the tool are varied to enhance the resulting tensile strength. The reverse DSFSW (DSFSW-R) is proven to provide a higher joint strength due to the mass transfer mechanism that occurs in the DSFSW process. The increase of the pin’s length enlarges the interference zone that multiplies the effect of strain hardening. The strain hardening is severer in DSFSW-R, and the gap between data measured in the DSFSW-R case and the in-line Double Side Friction StirWelding (DSFSW-i) case is wider due to the effect induced by the use of a longer pin.


Keywords: Double side friction stir welding; reverse double side stir friction welding; inline double side stir welding


REFERENCES


  1. [1] W. Thomas, M. Murch, E. Nicholas, P. Temple-Smith, J. Needham, and C. Dawes. Improvement Relating to Friction Welding. EP 0653265. 1995.
  2. [2] U. Das and V. Toppo. “Effect of Tool Rotational Speed on Temperature and Impact Strength of Friction Stir Welded Joint of Two Dissimilar Aluminum Alloys”. In: 5. 2. cited By 8. 2018, 6170–6175. DOI: 10.1016/j.matpr.2017.12.223.
  3. [3] T. Feng, X. Zhang, G. Fan, and L. Xu. “Effect of the rotational speed of on the surface quality of 6061 Alalloy welded joint using friction stir welding”. In: 213. 1. cited By 4. 2017. DOI: 10.1088/1757-899X/213/1/012047.
  4. [4] M. Bilgin and C. Meran, (2012) “The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels" Materials and Design 33(1): 376–383. DOI: 10.1016/j.matdes.2011.04.013.
  5. [5] D. Darmadi, F. Abdillah, and R. Raharjo, (2019) “Controlling the pressure force to obtain a better quality of aluminum 6061 friction stir welded joint" Eastern-European Journal of Enterprise Technologies 3(1-99): 6–10. DOI: 10.15587/1729-4061.2019.159286.
  6. [6] M. Mehta, A. Arora, A. De, and T. Debroy, (2011) “Tool geometry for friction stir welding - Optimum shoulder diameter" Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 42(9): 2716–2722. DOI:10.1007/s11661-01-0672-5.
  7. [7] Y. Bozkurt and Z. Boumerzoug, (2018) “Tool material effect on the friction stir butt welding of AA2124-T4 Alloy Matrix MMC" Journal of Materials Research and Technology 7(1): 29–38. DOI: 10.1016/j.jmrt.2017.04.001.
  8. [8] D. Darmadi, A. Mentary, E. Yusup, and S. Mahzan, (2019) “Evaluating The effect of the pin’s length to the strength of double sides Friction Stir Welded aluminum" International Journal of Integrated Engineering 11(5): 1–11. DOI: 10.30880/ijie.2019.11.05.001.
  9. [9] A. Akhunova, M. Imayev, and A. Valeeva, (2019) “Influence of the pin shape of the tool during friction stir welding on the process output parameters" Letters on Materials 9(4): 456–459. DOI: 10.22226/2410-3535-2019-4-456-459.
  10. [10] Y. Zhou, S. Chen, J. Wang, P. Wang, and J. Xia, (2018) “Influences of pin shape on a high rotation speed friction stir welding joint of a 6061-T6 aluminum alloy sheet" Metals 8(12): DOI: 10.3390/met8120987.
  11. [11] A. Banik, J. Deb Barma, and S. Saha, (2020) “Effect of Threaded Pin Tool for Friction StirWelding of AA6061-T6 at Varying Traverse Speeds: Torque and Force Analysis" Iranian Journal of Science and Technology - Transactions of Mechanical Engineering 44(3): 749–764. DOI: 10.1007/s40997-019-00289-w.
  12. [12] D. Darmadi and M. Talice, (2021) “Improving the strength of friction stir welded joint by double side friction welding and varying pin geometry" Engineering Science and Technology, an International Journal 24(3): 637–647. DOI: 10.1016/j.jestch.2020.11.001.
  13. [13] J. Unfried-Silgado, A. Torres-Ardila, J. Carrasco- García, and J. Rodríguez-Fernández, (2017) “Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy [Efectos de la geometría del hombro de la herramienta sobre las propiedades mecánicas de juntas soldadas por fricción-agitación de aleación de aluminio AA1100]" DYNA (Colombia) 84(200): 202–208. DOI:10.15446/dyna.v84n200.55787.
  14. [14] M. Mijajlovi´c, D. Milˇci´c, and M. Milˇci´c, (2014) “Numerical simulation of friction stir welding" Thermal science 18(3): 967–978. DOI: 10.2298/tsci1403967m.
  15. [15] X. Liu, Y. Yu, S. Yang, and H. Liu, (2020) “A Modified Analytical Heat Source Model for Numerical Simulation of Temperature Field in Friction StirWelding" Advances in Materials Science and Engineering 2020: DOI: 10.1155/2020/4639382.
  16. [16] Y. da Silva, F. Oliveira Júnior, J. dos Santos, F. Marcondes, and C. Silva, (2020) “Numerical investigation of the influence of FSW parameters on the heat and mass transfer of austenitic stainless steels" Welding in the World 64(12): 2019–2032. DOI: 10.1007/s40194-020-00980-6.
  17. [17] M. Al-Moussawi, A. Smith, A. Young, S. Cater, and M. Faraji, (2017) “Modelling of friction stir welding of DH36 steel" The International Journal of Advanced Manufacturing Technology 92(1): 341–360. DOI: 10.1007/s00170-017-0147-y.
  18. [18] J. Chen, R. Ueji, and H. Fujii, (2015) “Double-sided friction-stir welding of magnesium alloy with concaveconvex tools for texture control" Materials and Design 76: 181–189. DOI: 10.1016/j.matdes.2015.03.040.
  19. [19] P. L. Threadgill, M. Ahmed, J. P. Martin, J. G. Perrett, and B. P. Wynne. “The use of bobbin tools for friction stir welding of aluminium alloys”. In: Materials Science Forum. 638. Trans Tech Publ. 2010, 1179–1184. DOI: 10.4028/www.scientific.net/msf.638-642.1179.
  20. [20] D. B. Darmadi, D. Christyanto, and A. Sonief. “Evaluasi kwalitas sambungan friction stir welding dengan variasi pengulangan lintasan”. In: Seminar Nasional Tahunan Teknik Mesin – XV. 2016, 1290–1295.
  21. [21] K. Dudzik, (2014) “Properties of advancing side of weld in joint welded by FSW" Journal of KONES 21(3): 75–80.
  22. [22] A. Ismail, M. Awang, M. Rojan, and S. Samsudin, (2016) “The characteristic of temperature curves for friction stir welding of aluminium alloy 6063-T6 pipe during tool plunging stage" ARPN Journal of Engineering and Applied Sciences 11(1): 277–280.


    
 

0.7
2020CiteScore
 
 
33rd percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.