Hao Zhang1, HuaXiong Zhang This email address is being protected from spambots. You need JavaScript enabled to view it.1, XingYu Lu2, and Qiang Gao3

1Zhejiang Sci-Tech University, Hangzhou, China
2Northeastern University, Boston, MA, USA
3Communication University of Zhejiang, Hangzhou, China


 

Received: January 28, 2021
Accepted: July 10, 2021
Publication Date: August 16, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202204_25(2).0005  


ABSTRACT


Semantic text similarity(STS) measure plays an important role in the practical application of natural language processing. However, due to the complexity of Chinese semantic comprehension and the lack of currently available Chinese text similarity dataset, present research on Chinese semantic text similarity still exists many limitations. In this paper, we construct a new private self-built Chinese semantic similarity (NCSS) dataset and propose a new method called Attention-based Overall Enhance Network (ABOEN) for measuring semantic textual similarity. This model takes advantage of convolutional neural network upon soft attention layers to capture more fine-grained interactive features between two sentences. Besides, inspired by the channel attention mechanism in image classification, we adopt a channel attention mechanism to enhance the critical overall interactive features between two sentences. The experimental results show that compared with other baseline models, the accuracy based on our model on the NCSS and LCQMC datasets has increased by 1.38% and 1.49%, respectively, which proves the effectiveness of our proposed model.


Keywords: Chinese semantic textual similarity; convolutional neural network; attention mechanism; ABOEN


REFERENCES


  1. [1] H. T. Nguyen, P. H. Duong, and E. Cambria, (2019) “Learning short-text semantic similarity with word embeddings and external knowledge sources" Knowledge-Based Systems 182: 104842. DOI: 10.1016/j.knosys.2019.07.013.
  2. [2] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “BLEU: a method for automatic evaluation of machine translation”. In: Proceedings of the 40th annual meeting of the Association for Computational Linguistics. 2002, 311–318.
  3. [3] W. Yin and H. Schütze. “Convolutional neural network for paraphrase identification”. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2015, 901–911. DOI: 10.3115/v1/n15-1091.
  4. [4] M. Mohler, R. Bunescu, and R. Mihalcea. “Learning to grade short answer questions using semantic similarity measures and dependency graph alignments”. In: Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies. 2011, 752–762.
  5. [5] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao, (2020) “Deep learning based text classification: A comprehensive review" arXiv preprint arXiv:2004.03705:
  6. [6] B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas. “Short text classification in twitter to improve information filtering”. In: Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval. 2010, 841–842. DOI: 10.1145/1835449.1835643.
  7. [7] S. Poria, I. Chaturvedi, E. Cambria, and F. Bisio. “Sentic LDA: Improving on LDA with semantic similarity for aspect-based sentiment analysis”. In: 2016 international joint conference on neural networks (IJCNN). IEEE. 2016, 4465–4473. DOI: 10.1109/IJCNN.2016.7727784.
  8. [8] Y. Kim, (2014) “Convolutional neural networks for sentence classification" arXiv preprint arXiv:1408.5882:DOI: 10.3115/v1/d14-1181.
  9. [9] J. L. Elman, (1990) “Finding structure in time" Cognitive science 14(2): 179–211. DOI: 10 . 1016/0364 -0213(90)90002-E.
  10. [10] S. Hochreiter and J. Schmidhuber, (1997) “Long shortterm memory" Neural computation 9(8): 1735–1780.
  11. [11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, (2014) “Learning phrase representations using RNN encoder-decoder for statistical machine translation" arXiv preprint arXiv:1406.1078: DOI: 10 . 3115 / v1 / d14 -1179.
  12. [12] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah. “Signature verification using a" siamese" time delay neural network”. In: Advances in neural information processing systems. 1994, 737–744.
  13. [13] J. Mueller and A. Thyagarajan. “Siamese recurrent architectures for learning sentence similarity”. In: thirtieth AAAI conference on artificial intelligence. 2016.
  14. [14] P. Neculoiu, M. Versteegh, and M. Rotaru. “Learning text similarity with siamese recurrent networks”. In: Proceedings of the 1st Workshop on Representation Learning for NLP. 2016, 148–157.
  15. [15] W. Yin, H. Schütze, B. Xiang, and B. Zhou, (2016) “Abcnn: Attention-based convolutional neural network for modeling sentence pairs" Transactions of the Association for Computational Linguistics 4: 259–272.
  16. [16] T. Ranasinghe, C. Orasan, and R. Mitkov. “Semantic textual similarity with siamese neural networks”. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019). 2019, 1004–1011.
  17. [17] Z. Li, H. Lin, W. Zheng, M. M. Tadesse, Z. Yang, and J.Wang, (2020) “Interactive Self-Attentive Siamese Network for Biomedical Sentence Similarity" IEEE Access 8: 84093–84104. DOI: 10.1109/ACCESS.2020.2985685.
  18. [18] Q. Chen, X. Zhu, Z. Ling, S. Wei, H. Jiang, and D. Inkpen, (2016) “Enhanced lstm for natural language inference" arXiv preprint arXiv:1609.06038: DOI: 10.18653/v1/P17-1152.
  19. [19] Z. Wang, W. Hamza, and R. Florian, (2017) “Bilateral multi-perspective matching for natural language sentences" arXiv preprint arXiv:1702.03814:
  20. [20] N. Xie, S. Li, and J. Zhao. “ERCNN: Enhanced Recurrent Convolutional Neural Networks for Learning Sentence Similarity”. In: China National Conference on Chinese Computational Linguistics. Springer. 2019, 119–130. DOI: 10.1007/978-3-030-32381-3_10.
  21. [21] Z. Li, H. Lin, C. Shen,W. Zheng, Z. Yang, and J.Wang, (2020) “Cross2Self-attentive Bidirectional Recurrent Neural Network with BERT for Biomedical Semantic Text Similarity": 1051–1054. DOI: 10 . 1109 / BIBM49941 . 2020.9313452.
  22. [22] D. Bahdanau, K. Cho, and Y. Bengio, (2014) “Neural machine translation by jointly learning to align and translate" arXiv preprint arXiv:1409.0473:
  23. [23] L. Mou, R. Men, G. Li, Y. Xu, L. Zhang, R. Yan, and Z. Jin, (2015) “Natural language inference by tree-based convolution and heuristic matching" arXiv preprint arXiv:1512.08422: DOI: 10.18653/v1/p16-2022.
  24. [24] A. Graves and J. Schmidhuber, (2005) “Framewise phoneme classification with bidirectional LSTM and other neural network architectures" Neural networks 18(5-6): 602–610. DOI: 10.1016/j.neunet.2005.06.042.
  25. [25] M. Lin, Q. Chen, and S. Yan, (2013) “Network in network" arXiv preprint arXiv:1312.4400:
  26. [26] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, 770–778. DOI: 10.1109/CVPR.2016.90.
  27. [27] J. Hu, L. Shen, and G. Sun. “Squeeze-and-excitation networks”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, 7132–7141. DOI: 10.1109/CVPR.2018.00745.
  28. [28] V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltzmann machines”. In: ICML. 2010.
  29. [29] W. Dolan, C. Quirk, C. Brockett, and B. Dolan, (2004) “Unsupervised construction of large paraphrase corpora: Exploiting massively parallel news sources":
  30. [30] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Specia, (2017) “Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation" arXiv preprint arXiv:1708.00055:
  31. [31] C.-T. J. Huang. Logical relations in Chinese and the theory of grammar. Taylor & Francis, 1998.
  32. [32] X. Liu, Q. Chen, C. Deng, H. Zeng, J. Chen, D. Li, and B. Tang. “Lcqmc: A large-scale chinese question matching corpus”. In: Proceedings of the 27th International Conference on Computational Linguistics. 2018, 1952–1962.
  33. [33] S. Li, Z. Zhao, R. Hu, W. Li, T. Liu, and X. Du, (2018) “Analogical reasoning on chinese morphological and semantic relations" arXiv preprint arXiv:1805.06504: DOI:10.18653/v1/p18-2023.
  34. [34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, (2014) “Dropout: a simple way to prevent neural networks from overfitting" The journal of machine learning research 15(1): 1929–1958.
  35. [35] D. P. Kingma and J. Ba, (2014) “Adam: A method for stochastic optimization" arXiv preprint arXiv:1412.6980:
  36. [36] G. S. Tomar, T. Duque, O. Täckström, J. Uszkoreit, and D. Das, (2017) “Neural paraphrase identification of questions with noisy pretraining" arXiv preprint arXiv:1704.04565:


    
 

0.7
2020CiteScore
 
 
33rd percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.