Atthaillah This email address is being protected from spambots. You need JavaScript enabled to view it.1,2, Rizki A. Mangkuto3, M. Donny Koerniawan4, and F.X. Nugroho Soelami3

1Architecture Program, Faculty of Engineering, Universitas Malikussaleh, Jl. Cot Teungku Nie, Aceh Utara 24355, Indonesia
2Engineering Physics Doctorate Program, Faculty of Industrial Technology Institut Teknologi Bandung, Jl. Ganesha 10, Labtek VI, Bandung 40132, Indonesia
3Building Physics Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Labtek VI, Bandung 40132, Indonesia
4Building Technology Research Group, School of Architecture, Planning, and Policy Development, Institut Teknologi Bandung, Jl. Ganesha 10, Labtek VI, Bandung 40132, Indonesia


Received: December 9, 2020
Accepted: February 16, 2021
Publication Date: July 19, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  


This study investigated twenty-two (22) state elementary schools, regarding daylight annual illuminance in the classrooms, using climate-based daylight modelling (CBDM) metrics. This is due to the missing information on the annual daylight performance inside the classroom in Indonesia. Over 250 classrooms were assessed using Rhinoceros and Grasshopper computational platforms. Furthermore, Daysim simulation engine was employed through the advantage of Ladybug tools to connect and automate the simulation workflow parametrically. Since there were no prior studies using CBDM metrics for daylight assessment of classrooms in the Indonesian context, the illuminance range from 250 to 750 lux was taken as the target for the annual useful daylight illuminance (UDI), as suggested in the Indonesian daylighting standard. Result shows 35 classrooms under the good daylight performance, 171 classrooms in sufficient category and 50 others under unsatisfactory of annual illuminance. The most sensitive contributors are both corridor and back shading depth with Spearman correlation of -0.70 and -0.76 respectively. The strong sensitive variables both has p-values lower than 0.05 which indicates statistically significant for the model.

Keywords: Daylighting; Elementary School Classrooms; Climate Based Daylight Modeling; Computer Simulation; Annual Illuminances


  1. [1] Norbert Lechner. Heating, Cooling, lighting : Metode Desain untuk Arsitektur, 2007.
  2. [2] Christina. E Mediastika. Hemat Energi dan Lestari Lingkungan melalui Bangunan, 2013.
  3. [3] Gregg D Ander. Daylighting, 2016.
  4. [4] I Irnawaty, M Ramli Rahim, Baharuddin Hamzah, and Nurul Jamala. Daylight intensity analysis of secondary school buildings for environmental development. In IOP Conference Series: Earth and Environmental Science, volume 382, page 012022. IOP Publishing, 2019.
  5. [5] Lisa Heschong, Roger Wright, and Stacia Okura. Daylighting and productivity: Elementary school studies. Proceedings ACEEE Summer Study on Energy Efficiency in Buildings, 8:149–160, 2000.
  6. [6] Mohamed Boubekri. Daylighting, architecture and health: Building design strategies. Elsevier, Oxford, 2008. ISBN 9781136411946.
  7. [7] Parnian Bakmohammadi and Esmatullah Noorzai. Optimization of the design of the primary school classrooms in terms of energy and daylight performance considering occupants’ thermal and visual comfort. Energy Reports, 6:1590–1607, nov 2020. ISSN 23524847.
  8. [8] Rizki A. Mangkuto, Deasty Kusuma Dewi, Annisa Azalia Herwandani, Mochamad Donny Koerniawan, and Faridah. Design optimisation of internal shading device in multiple scenarios: Case study in Bandung, Indonesia. Journal of Building Engineering, 24, 2019. ISSN 23527102.
  9. [9] Ali Ahmed Salem Bahdad, Sharifah Fairuz Syed Fadzil, and Nooriati Taib. Optimization of daylight performance based on controllable light-shelf parameters using genetic algorithms in the tropical climate of malaysia. Journal of Daylighting, 7(1):122–136, jun 2020. ISSN 23838701.
  10. [10] Anna Pellegrino, Silvia Cammarano, and Valeria Savio. Daylighting for Green schools: A resource for indoor quality and energy efficiency in educational environments. In Energy Procedia, volume 78, pages 3162–3167. Elsevier Ltd, nov 2015.
  11. [11] R. N. Syaheeza, EMHusini, F Arabi,W. N.W. Ismail, and M Z Kandar. Secondary school classrooms daylighting evaluation in Negeri Sembilan, Malaysia. In IOP Conference Series: Materials Science and Engineering, volume 401, Kuala Lumpur, 2018. 2nd International Conference on Architecture and Civil Engineering (ICACE 2018).
  12. [12] Kementerian Pendidikan Dan Kebudayaan. Peraturan menteri pendidikan nasional republik Indonesia nomor 24 tahun 2007 tentang standar sarana dan prasarana untuk sekolah Dasar/Madrasah ibtidaiyah (SD/MI), sekolah menengah Pertama/Madrasah tsanawiyah (SMP/MTs), dan sekolah menengah Atas/Madrasah a. Lembaran Negara RI, 3(September):1–8, 2007.
  13. [13] SNI 03-6575. Tata cara perancangan sistem pencahayaan buatan pada gedung. pages 1–32, 2001.
  14. [14] Christoph F. Reinhart, John Mardaljevic, and Zack Rogers. Dynamic daylight performance metrics for sustainable building design. LEUKOS - Journal of Illuminating Engineering Society of North America, 3(1):7–31, jul 2006. ISSN 15502724.
  15. [15] Mesloub Abdelhakim, Yaik Wah Lim, and Mohd Zin Kandar. Optimum glazing configurations for visual performance in Algerian classrooms under mediterranean climate. Journal of Daylighting, 6(1):11–22, 2019. ISSN 23838701.
  16. [16] Kjell Anderson. Design Energy Simulation for Architects. Routledge, New York, 2014. ISBN 9780415840651.
  17. [17] I Idrus, B Hamzah, and R Mulyadi. Intensitas pencahayaan alami ruang kelas sekolah dasar di kota makassar. simposium nasional rapi xv-2016 ft ums, 473â “479, 2016.
  18. [18] Rekso Wibowo, Jefery Kindangen, and Sangkertadi. Sistem Pencahayaan Alami dan Buatan di Ruang Kelas Sekolah Dasar di Kawasan Perkotaan. Jurnal Arsitektur, 6(1):87–98, 2017.
  19. [19] Irnawaty Idrus, Ramli Rahim, Baharuddin Hamzah, Rosady Mulyadi, and Nurul Jamala. Evaluasi Pencahayaan Alami Ruang Kelas di Areal Pesisir Pantai Sulawesi Selatan. Jurnal Linears, 2(2):73–78, 2020.
  20. [20] 2011 SNI 6197. Konservasi Energi pada Sistem Pencahayaan. Standar Nasional Indonesia, page 34, 2011. ISSN 0022-3050.
  21. [21] A. Nabil and J. Mardaljevic. Useful daylight illuminance: A new paradigm for assessing daylight in buildings. Lighting Research and Technology, 37(1):41–59, 2005. ISSN 14771535.
  22. [22] USGBC. LEED Reference Guide for Building Design and Construction - With Alternative Compliance Paths for South America. Washington DC, 2009. ISBN 9781932444117.
  23. [23] E.F.A. PSBP. Facilities Output Specification, Tecnical Report. Technical report, 2013.
  24. [24] USGBC. 100002149 | U.S. Green Building Council, 2017.
  25. [25] E. Brembilla and J. Mardaljevic. Climate-Based Daylight Modelling for compliance verification: Benchmarking multiple state-of-the-art methods. Building and Environment, 158:151–164, jul 2019. ISSN 03601323.
  26. [26] Atthaillah Atthaillah and Andik Bintoro. Useful daylight illuminace (UDI) pada ruang belajar sekolah dasar di kawasan urban padat tropis (Studi kasus: sd negeri 2 dan 6 Banda sakti, Lhokseumawe,Aceh, Indonesia). Langkau betang: Jurnal arsitektur, 6(2):72, dec 2019. ISSN 2355-2484.
  27. [27] Atthaillah Atthaillah and Andik Bintoro. Useful Day light Illuminance (UDI) pada Sekolah Dasar Negeri 1 (Satu) Banda Sakti Lhokseumawe, Aceh. In Temu Ilmiah Ikatan Peneliti Lingkungan Binaan Indonesia (IPLBI) 7, pages C099–C105, 2019.
  28. [28] L Callejas, L Pereira, A Reyes, P Torres, and B Piderit. Optimization of Natural Lighting Design for Visual Comfort in Modular Classrooms: Temuco Case. In IOP Conference Series: Earth and Environmental Science, volume 503. IOP Conf. Series: Earth and Environmental Science 503, 2020.
  29. [29] Robert McNeel and Associates. Rhinoceros - NURBS, 2019.
  30. [30] Rizki A Mangkuto, Randy Frans Fela, and Sentagi S Utami. Effect of façade thickness on daylight performance in a reference office building.
  31. [31] Gil Akos and Ronnie Parsons. Foundations. The Grasshopper Primer Third Edition. Mode Lab, New York, 2014.
  32. [32] Arturo Tedeschi. AAD Algorithms-Aided Design: Parametric Strategies Using Grasshopper. Le Penseur, Brienza, 2014. ISBN 9788895315300.
  33. [33] Mostapha Sadeghipour Roudsari, Michelle Pak, Adrian Smith, et al. Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the 13th international IBPSA conference held in Lyon, France Aug, pages 3128–3135, 2013.
  34. [34] Sarith Subramaniam and Richard Mistrick. A More Accurate Approach for calculating Illuminance with Daylight Coefficients. Illuminating Engineering Society Annual Conference 2017, (May):18, 2018.
  35. [35] ASHRAE IWEC2Weather Files. IWEC2Weather Files. URL
  36. [36] Rizki A. Mangkuto, Anindya Dian Asri, Mardliyahtur Rohmah, F. X. Nugroho Soelami, and R. M. Soegijanto. Revisiting the national standard of daylighting in Indonesia: A study of five daylit spaces in Bandung. Solar Energy, 126:276–290, 2016. ISSN 0038092X.