Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Changgao Xia1,  Chenxi Sun This email address is being protected from spambots. You need JavaScript enabled to view it. 1, Jiangyi Han1

1College of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, P.R. China


 

Received: February 26, 2020
Accepted: May 15, 2020
Publication Date: September 1, 2020

Download Citation: ||https://doi.org/10.6180/jase.202009_23(3).0017  

ABSTRACT


In order to improve the quality and efficiency of hedge trimming, a research of a four-degree-of-freedom trimming manipulator is carried out in this paper. The global kinematic performance metric (that is, the Global Condition Index constructed by the Jacobian matrix) is utilized to measure the dexterity of the manipulator. Then the structural parameter optimization model is established using the maximum Global Condition Index(GCI) as the objective function and the particle swarm algorithm is used to solve the optimization problem. The optimal link lengths(big arm, middle arm forearm) of the manipulator are 1190, 937, and 633mm, the initial GCI is 0.68442, and the optimized value is 0.79521. Obviously, the dexterity is higher. To verify the feasibility of the optimized manipulator, this paper proposes a method to evaluate the workspace, using accessibility to express how much the actual workspace satisfies the target workspace. Simulation results show that the reachability of optimized manipulator is 100%, improved by 11.21%, which proves that the optimized manipulator is completely feasible.


Keywords: trimming manipulator, Global Condition Index, optimization, workspace


REFERENCES


 

  1. [1] Wei, Q. (2014) Research and design of double-sided high-efficiency hedge trimmer, Guangxi: Guangxi University.
  2. [2] Wang, Y. J. (2016) Structural parameters optimization of multi-degree-of-freedom manipulator, Beijing: Beijing Institute of. Technology.
  3. [3] Wang, X. W., M. H. Wu, J. Zhou, et al. (2018) Optimization and simulation of structural parameters of manipulators for high-quality tea picking robots, Journal of Chinese Agricultural Mechanization39(7),84-89. doi:10.13733/j.jcam.issn.2095-5553.2018.07.017
  4. [4] Tian, H. B., H. W. Ma, and J. Wei(2013) Workspace and structural parameter analysis for manipulator of serial robot, Journal of Agricultural Machinery 44(4),196-201. doi:10. 6041/j.issn.1000-1298.2013.04.034.
  5. [5] Salisbury, J. K., and J. J. Craig (1982) Articulated Hands: Force Control and Kinematic Issues, The International Journal of Robotics Research 1(1), 4-17. doi:10.1177/ 027836498200100102
  6. [6] Gosselin, C., J. Angeles (1991) A global performance index for the kinematic optimization of robotic manipulators, ASME Journal of Mechanical Design113,220-226. doi:10.1115/ 1.2912772
  7. [7] Tang, G. (2018) Research on kinetic characteristics of expressway hedgerow pruning robot, Chongqing: Chongqing Jiaotong University.
  8. [8] Liu, Z. Z., H. Y. Liu, Z. Luo, et al. (2013) Improvement on Monte Carlo Method for Robot Workspace Determination, Transactions of the Chinese Society for Agricultural Machiner44(1),230-235. doi:10.6041/j.issn.1000-1298.2013.01.043
  9. [9] Ye, R. P. (2016) Research on modeling and simulation of 5-DOF serial manipulator, Shenzhen: Shenzhen University.
  10. [10] Pond, G. T., and J. A. Carretero (2007) Quantitative dexterous workspace comparison of parallel manipulators, Mechanism and Machine Theory 42 (10),1388–1400. doi:10.1016/j.mechmachtheory.2006.10.004
  11. [11] Qu, M. K., H. B. Wang, and Y. Rong (2017) Design of 6-DOF parallel mechanical leg of wheel-leg hybrid quadruped robot, Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) 33(11), 29-37. doi:10.11975/j.issn.1002-6819. 2017.11.004
  12. [12] Rong, Y., Z. L. Jin, and B. Y. Cui(2012) Configuration analysis and structure parameter design of six-leg agricultural robot with parallel-leg mechanisms, Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) 28(15), 9-14. doi:10.3969/j.issn.1002-6819.2012.15.002
  13. [13] Tsal, L. W., and S. Joshi (2000) Kinematics and optimization of a spatial 3-UPU parallel manipulator, Journal of Mechanical Design 122 (4), 439–446. doi:10.1115/1.1311612
  14. [14] Wang, H. F., B. Yin, R. J. Luo, et al. (2019) Mechanism design and kinematics analysis of 4-dof SCARA robot system. Journal of Mechanical & Electrical Engineering 36(12), 1320–1324.doi:10.3969/j.issn.1001-4551.2019.12.017
  15. [15] Chaudhury, A. N., and A. Ghosal(2017) Optimum design of multi-degree-of-freedom closed- loop mechanisms and parallel manipulators for a prescribed workspace using Monte Carlo method, Mechanism and Machine Theory 118 ,115-138. doi:10.1016/j. mechmachtheory.2017.07.021
  16. [16] Cai, Z., and B. Xie (2015) Robotics. Third Edition, Beijing: Tsinghua University Press, 8-9.
  17. [17] Song, J. (2008) Optimization design and simulation of the structural parameters of eggplant picking robot, Mechanical Design & Manufacture (6):166-168.
  18. [18] Wei, J. (2013) Design and Research of Hedge Seedling Pruning Manipulator, Guangxi, Guangxi University.
  19. [19] Li, H. Z., Z. G. Hu, L. J. Guo, et al. (2014) Simulation study of manipulator with three degree of freedom, Mechanical Design & Manufacture (10):186-189. doi:10.19356/ j. cnki.1001-3997.2014.10.056
  20. [20] Fu, Y. D.(2016) The design and research of mechanism and control system of the cucumber harvesting manipulator, JilinJilin University.
  21. [21] Kivela, T., J. Mattila, and J. Puura (2017) A generic method to optimize a redundant serial robotic manipulator’s structure, Automation in Construction 81, 172-179.doi:10. 1016/j.autcon.2017.06.006
  22. [22] Kucuk, S., Z. Bingul(2003) Robot workspace optimization based on the Global Condition Index, IFAC Automatic Systems for Building the Infrastructure in Developing Countries,117-122.doi:10.1016/S1474-6670(17)35817-2
  23. [23] Kumar, V., S. Sen, S. R. Shibendu, et al. (2014) Design Optimization of Serial Link Redundant Manipulator: an approach using global performance metric, 2nd International Conference on Innovations in Automation and Mechatronics Engineering,43-50. doi:10.1016/j.protcy.2014.08.007
  24. [24] Lim, H. S., S. W. Hwang, K. S. Shin, et al. (2010) Design Optimization of the robot manipulator based on global performance indices using the grey-based Taguchi method, 5th IFAC Symposium on Mechatronic Systems Marriott Boston Cambridge,285-292. doi:10.3182/20100913-3-us-2015.00078
  25. [25] West, C., A. Monatzer, S. D. Monk, et al. (2016) A genetic algorithm approach for parameter optimization of a 7DOF robotic manipulator, International Federation of Automatic Control,1261-1266. doi:10.1016/j.ifacol.2016.07.688
  26. [26] Ye, Y., C. B. Yin, Y. Gong, et al. (2017) Position control of nonlinear hydraulic system using an improved PSO based PID controller, Mechanical Systems and Signal Processing 83, 241-259. doi:10.1016/j.ymssp.2016.06.010
  27. [27] Cao, Y., H. H. Zang, L. Wu, et al. (2011) An engineering-oriented method for the three dimensional workspace generation of robot manipulator, Journal of Information & Computational Scienc 8(1), 51–61.