REFERENCES
- [1] Soshi, K. and Kozo, F., “Computational Study of a Supersonic Base Flow Using LES/RANS Hybrid Methodology,” AIAA Paper 2004-68 (2004). doi: 10.2514/ 6.20 04-68
- [2] Sahu, J. and Heavey, K. R., “Numerical Investigation of Supersonic Base Flow with Base Bleed,” AIAAPaper 95-3459 (1995). doi: 10.2514/2.3173
- [3] William, B. C., Khaled, S. A. and William, K. A., “Comparison of Algebraic Turbulence Models for Afterbody Flows with Jet Exhaust,” AIAA Journal, Vol. 30, pp. 27162722 (1992). doi: 10.2514/3.11289
- [4] Yang, A. S., Hsieh, W. H. and Kuo, K. K., “Theoretic Study of Supersonic Flow Separation over a Rearward-facing Step,” AIAA Paper 91-2161 (1991). doi: 10.2514/2.7642
- [5] Baldwin, B. C. and Lomax, H., “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows,” AIAA Paper 78-257 (1978). doi: 10.2514/6. 1978-257
- [6] Nichols, R. H., Maus, J. R., Spinetti, R. L. and Movlvik, G. A., “Calculation of High Speed Base Flows,” AIAA Paper 92-2679 (1992). doi: 10.2514/6.1992-2679
- [7] Lin, H. and Chieng, C. C., “Comparisons of TVD Schemes for Turbulent Transonic Projectile Aerodynamics Computations with a Two-equation Model of Turbulence,” International Journal for Numerical Methods in Fluids, Vol. 16, pp. 365390 (1993). doi: 10. 1002/fld.1650160503
- [8] Chuang, C. C. and Chieng, C. C., “Transonic Turbulent Separated Flow Predictions Using a Two Layer Turbulence Model,” AIAA Journal, Vol. 31, No. 5, pp. 816817 (1993). doi: 10.2514/3.11689
- [9] Soo, H.P.,Sumanta,A.and Jang, H.K., “An Improved Formulation of k- Turbulence Models for Supersonic Base Flow,” AIAA Paper 2005-4707 (2005). doi: 10. 2514/6.2005-4707
- [10] Franck, S., Sebastien, D. and Philippe, G., “Numerical Simulations of Projectile Base Flow,” AIAA Paper 2006-1116 (2006). doi: 10.2514/6.2006-1116
- [11] Spalart, P. R. and Allmaras, S. R., “A One-equation Turbulence Model for Aerodynamics Flows,” AIAA Paper 92-0439 (1992). doi: 10.2514/6.1992-439
- [12] Wilcox, D. C., Turbulence Modeling for CFD, Califomia: DCW Industries Inc., pp. 243261 (2006).
- [13] Menter, F. R., “Two Equation Eddy Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, pp. 15981605 (1994). doi: 10. 2514/3.12149
- [14] Sarkar, S., “The Pressure-dilatation Correlation in Compressible Flows,” Physics of Fluids, Vol. 4, pp. 2674 2682 (1992). doi: 10.1063/1.858454
- [15] Sarker, S., Erlebacher, G. and Hussaini, M. Y., “The Analysis and Modeling of Dilatational Terms in Compressible Turbulence,” Journal of Fluid Mechanics, Vol. 227, pp. 473493 (1991). doi: 10.1017/S002211 2091000204
- [16] Zeman, O., “Dilatational Dissipation: the Concept and Application in Modeling Compressible Mixing Layers,” Physics of Fluids A Fluid Dynamics, Vol. 2, pp. 178188 (1990). doi: 10.1063/1.857767
- [17] Menter,F.R.,“Improved Two-equation k-Turbulence Models for Aerodynamic Flows,” NASA TM-103975 (1992).
- [18] Zhang, H. X., Chen, J. Q. and Gao, S. C., “Numerical Simulation of Supersonic Non-equilibrium Flows for H2/O2 Combustion,” Journal of Astronautics, Vol. 15, pp. 1423 (1994).
- [19] Steger, J. L. and Warming,R. F., “Flux Vector Splitting of the Invisid Gas-dynamics Equations with Application to FiniteDifference Methods,” Journal of Computational Physics, Vol. 40, pp. 263293 (1981). doi: 10. 1016/0021-9991(81)90210-2
- [20] Van,Leer.B.,“Flux Vector Splitting for Euler Equations,” Lecture Notes in Physics, pp. 170:507512 (1982).
- [21] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin (1997). doi: 10. 1007/978-3-662-03490-3
- [22] Kim,K.H.,Kim,C.andRho,O.H.,“Methods for the Accurate Computations of Hypersonic Flows: I. AUSMPW+ Scheme,”Journal ofComputational Physics, Vol. 174, pp. 3880 (2001). doi: 10.1006/jcph.2001.6873
- [23] Yasuhiro, W. and Liu, M. S., “AFlux Splitting Scheme with High-resolution and Robustness for Discontinuities,” AIAA Paper 94-0083 (1994). doi: 10.2514/6. 1994-83
- [24] Herrin, J. L. and Dutton, J. C., “Supersonic Base Flow Experiments in the Near-wake of a Cylindrical Afterbody,” AIAA Paper 93-2924 (1993). doi: 10.2514/3. 11953