Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Pin-Chun Huang1, Yung-Ta Huang1, Fu-Ling Yang1 and Wen-Pin Shih This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 106, R.O.C.


 

Received: June 6, 2016
Accepted: June 17, 2016
Publication Date: December 1, 2016

Download Citation: ||https://doi.org/10.6180/jase.2016.19.4.11  

ABSTRACT


Nematic liquid crystals with orientational order can be disturbed by electromagnetic fields, thermal gradients, and other forces. Here we demonstrated that the orientation of nematic liquid crystal molecules is influenced by the motion of colloidal particles subjected to a centrifugal force. The associated dynamics of the colloidal particles dispersed in nematic liquid crystals was also derived. The capacitance of the paricles/liquid crystal dispersion changes once its angular velocity exceeds a threshold dominated by the elastic force of the liquid crystal. Both numerical derivation and experiment showed that the elastic trapping force is associated with elastic energy and anchoring energy of particle surface. Furthermore, the hysteresis capacitance increases with increasing differential capacitance of the liquid crystals but is affected by the particle mobility. The characteristic of realigning the director by the changing rotational velocity offers numerous sensing applications, and the force mechanisms exerting on colloidal particles in nematic liquid crystals can be applied to biotechnology, microfluidic applications, or manipulation of the colloidal particles transport in anisotropic liquid.


Keywords: Nematic Liquid Crystal, Colloidal Particle, Elastic Trapping Force, Rotational Dynamics


REFERENCES


  1. [1] Chung, A. J., Kim, D. and Erickson, D., “Electrokinetic Microfluidic Devices for Rapid, Low Power Drug Delivery in Autonomous Microsystems,” Lab on a Chip, Vol. 8, No. 2, pp. 330338 (2008). doi: 10. 1039/b713325A
  2. [2] Baughman, R. H., Zakhidov, A. A. and de Heer, W. A., “Carbon Nanotubes - the Route Toward Applications,” Science, Vol. 297, No. 5582, pp. 787792 (2002). doi: 10.1126/science.1060928
  3. [3] Takahashi, T., Saito, S. and Toko, Y., “A Novel Type of Display for Electronic Paper Using Fine Particles Dispersed in Nematic Liquid Crystal,” Japanese Journal of Applied Physics, Vol. 43, No. 10, pp. 71817186 (2004). doi: 10.1143/JJAP.43.7181
  4. [4] Shui, L. L., Hayes, R. A., Jin, M. L., Zhang, X., Bai, P. F., van den Berg, A. and Zhou, G. F., “Microfluidics for Electronic Paper-Like Displays,” Lab on a Chip, Vol. 14, No. 14, pp. 23742384 (2014). doi: 10.1039/ c4lc00020j
  5. [5] Sun, Z. M., Fang, J. Y., Ming, N. B. and Tang, X. W., “Motion of Suspended Particles in a Nematic Liquid Crystal,” Physics Letters A, Vol. 145, No. 5, pp. 284 286 (1990). doi: 10.1016/0375-9601(90)90366-V
  6. [6] Koenig, G. M., Ong, R., Cortes, A. D., Moreno-Razo, J. A., de Pablo, J. J. and Abbott, N. L., “Single Nanoparticle Tracking Reveals Influence of Chemical Functionality of Nanoparticles on Local Ordering of Liquid Crystals and Nanoparticle Diffusion Coefficients,” Nano Letters, Vol. 9, No. 7, pp. 27942801 (2009). doi: 10.1021/nl901498d
  7. [7] Loudet, J. C., Hanusse, P. and Poulin, P., “Stokes Drag on a Sphere in a Nematic Liquid Crystal,” Science, Vol. 306, No. 5701, pp. 15251525 (2004). doi: 10. 1126/science.1102864
  8. [8] Turiv, T., Lazo, I., Brodin, A., Lev, B. I., Reiffenrath, V., Nazarenko, V. G. and Lavrentovich, O. D., “Effect of Collective Molecular Reorientations on Brownian Motion of Colloids in Nematic Liquid Crystal,” Science, Vol. 342, No. 6164, pp. 13511354 (2013). doi: 10.1126/science.1240591
  9. [9] Mondiot, F., Loudet, J. C., Mondain-Monval, O., Snabre, P., Vilquin, A. and Wurger, A., “Stokes-Einstein Diffusion of Colloids in Nematics,” Physical Review E, Vol. 86, No. 1, Part 1 (2012). doi: 10.1103/ PhysRevE.86.010401
  10. [10] Senyuk, B. and Smalyukh, I. I., “Elastic Interactions Between Colloidal Microspheres and Elongated Convex and Concave Nanoprisms in Nematic Liquid Crystals,” Soft Matter, Vol. 8, No. 33, pp. 87298734 (2012). doi: 10.1039/c2sm25821h
  11. [11] Senyuk, B., Evans, J. S., Ackerman, P. J., Lee, T., Manna, P., Vigderman, L., Zubarev, E. R., van de Lagemaat, J. and Smalyukh, I. I., “Shape-Dependent Oriented Trapping and Scaffolding of Plasmonic Nanoparticles by Topological Defects for Self-Assembly of Colloidal Dimers in Liquid Crystals,” Nano Letters, Vol. 12, No. 2, pp. 955963 (2012). doi: 10.1021/ nl204030t
  12. [12] Pishnyak, O. P., Tang, S., Kelly, J. R., Shiyanovskii, S. V. and Lavrentovich, O. D., “Levitation, Lift and Bidirectional Motion of Colloidal Particles in an Electrically Driven Nematic Liquid Crystal,” Physical Review Letters, Vol. 99, No. 12, 127802 (2007). doi: 10. 1103/PhysRevLett.99.127802
  13. [13] Poulin, P., Stark, H., Lubensky, T. C. and Weitz, D. A., “Novel Colloidal Interactions in Anisotropic Fluids,” Science, Vol. 275, No. 5307, pp. 17701773 (1997). doi: 10.1126/science.275.5307.1770
  14. [14] Voloschenko, D., Pishnyak, O. P., Shiyanovskii, S. V. and Lavrentovich, O. D., “Effect of Director Distortions on Morphologies of Phase Separation in Liquid Crystals,” Physical Review E, Vol. 65, No. 6, 060701 (2002). doi: 10.1103/PhysRevE.65.060701
  15. [15] Pires, D., Fleury, J. B. and Galerne, Y., “Colloid Particles in the Interaction Field of a Disclination Line in a Nematic Phase,” Physical Review Letters, Vol. 98, No. 24, 247801 (2007). doi: 10.1103/PhysRevLett.98.24 7801
  16. [16] Baik, I. S., Jeon, S. Y., Lee, S. H., Park, K. A., Jeong, S. H., An, K. H. and Lee, Y. H., “Electrical-Field Effect on Carbon Nanotubes in a Twisted Nematic Liquid Crystal Cell,” Physical Review Letters, Vol. 87, No. 26, 263110 (2005). doi: 10.1063/1.2158509
  17. [17] Hernandez-Navarro, S., Tierno, P., Ignes-Mullol, J. and Sagues, F., “AC Electrophoresis of Microdroplets in Anisotropic Liquid: Transport, Assembling and Reaction,” Soft Matter, Vol. 9, No. 33, pp. 79998004 (2013). doi: 10.1039/c3sm51705e
  18. [18] Srivastava, A. K., Jeong, S. J., Lee, M. H., Leea, S. H., Jeong, S. H. and Lee, Y. H., “Dielectrophoresis Force Driven Dynamics of Carbon Nanotubes in Liquid Crystal Medium,” Journal of Applied Physics, Vol. 102, No. 4, 043503 (2007). doi: 10.1063/1.2769341
  19. [19] Srivastava, A. K., Kim, M., Kim, S. M., Kim, M. K., Lee, K., Lee, Y. H., Lee, M. H. and Lee, S. H., “Dielectrophoretic and Electrophoretic Force Analysis of Colloidal Fullerenes in a Nematic Liquid-Crystal Medium,” Physical Review E, Vol. 80, No. 5, 051702 (2009). doi: 10.1103/PhysRevE.80.051702
  20. [20] Smalyukh, I. I., Kuzmin, A. N., Kachynski, A. V., Prasad, P. N. and Lavrentovich, O. D., “Optical Trapping of Colloidal Particles and Measurement of the Defect Line Tension and Colloidal Forces in a Thermotropic Nematic Liquid Crystal,” Applied Physics Letters, Vol. 86, No. 2, 021913 (2005). doi: 10.1063/ 1.1849839
  21. [21] Ryzhkova, A. V., Podgornov, F. V., Gaebler, A., Jakoby, R. and Haase, W., “Measurements of the Electrokinetic Forces on Dielectric Microparticles in Nematic Liquid Crystals Using Optical Trapping,” Journal of Applied Physics, Vol. 113, No. 24, 244902 (2013). doi: 10. 1063/1.4809976
  22. [22] Huang, P.-C. and Shih, W.-P., “Angular Velocity Response of Nanoparticles Dispersed in Liquid Crystal,” Applied Physics Letters, Vol. 102, No. 24, 243510 (2013). doi: 10.1063/1.4812297
  23. [23] Jian, B.-R., Tang, C.-Y. and Lee, W., “TemperatureDependent Electrical Properties of Dilute Suspensions of Carbon Nanotubes in Nematic Liquid Crystals,” Carbon, Vol. 49, No. 3, pp. 910914 (2011). doi: 10. 1016/j.carbon.2010.11.001
  24. [24] Lo, K. Y., Shiah, C. C. and Huang, C. Y., “Actual Capacitance Function of Nematic Liquid Crystal Cell,” Japanese Journal of Applied Physics, Vol. 45, pp. 891895 (2006). doi: 10.1143/JJAP.45.891
  25. [25] de Gennes, P. G. and Prost, J., The Physics of Liquid Crystals, 2nd ed., Clarendon Press, Oxford, pp. 113 114, pp. 225226 (1993). doi: 10.1063/1.2808028
  26. [26] Lubensky, T. C., Pettey, D., Currier, N. and Stark, H., “Topological Defects and Interactions in Nematic Emulsions,” Physics Review E, Vol. 57, No. 1, pp. 610625 (1998). doi: 10.1103/PhysRevE.57.610
  27. [27] Wang, H., Wu, T. X., Gauza, S., Wu, J. R. and Wu, S.-T., “A Method to Estimate the Leslie Coefficients of Liquid Crystals Based on MBBA Data,” Liquid Crystals, Vol. 33, No. 1, pp. 9198 (2006). doi: 10.1080/ 02678290500446111
  28. [28] Stark, H. and Ventzki, D., “Stokes Drag of Spherical Particles in a Nematic Environment at Low Ericksen Numbers,” Physics Review E, Vol. 64, No. 3, 031711 (2001). doi: 10.1103/PhysRevE.64.031711
  29. [29] Stewart, I. W., The Static and Dynamic Continuum Theory of Liquid Crystals, Taylor and Francis, London, pp. 2223 (2004).
  30. [30] Loudet, J. C., Barois, P. and Poulin, P., “Colloidal Ordering from Phase Separation in a Liquid-Crystalline Continuous Phase,” Nature, Vol. 407, No. 6804, pp. 611613 (2000).
  31. [31] Lavrentovich, O. D., “Transport of Particles in Liquid Crystals,” Soft Matter, Vol. 10, No. 9, pp. 12641283 (2014). doi: 10.1039/C3SM51628H
  32. [32] Pan, R.-P., Wu, H.-Y. and Hsieh, C.-F., “Liquid Crystal Surface Alignments by Using Films Composed of Magnetic Nanoparticles,” Proc. of Emerging Liquid Crystal Technologies III, San Jose, U.S.A., SPIE 6911, 691104 (2008). doi: 10.1117/12.762985
  33. [33] Nie, X. Y., Lu, R. B., Xianyu, H. Q., Wu, T. X. and Wu, S. T., “Anchoring Energy and Cell Gap Effects on Liquid Crystal Response Time,” Journal of Applied Physics, Vol. 101, No. 10, 103110 (2007). doi: 10. 1063/1.2734870
  34. [34] Nazarenko, V. G. and Lavrentovich, O. D., “Anchoring Transition in a Nematic Liquid Crystal Composed of Centrosymmetric Molecules,” Physics Review E, Vol. 49, No. 2, pp. R990R993 (1994). doi: 10.1103/ PhysRevE.49.R990
  35. [35] Nazarenko, V. G., Pergamenshchik, V. M., Koval’ Chuk, O. and Lev, B. I., “Non-Debye Charge Screening and Adsorbed-Ion-Induced Anchoring Transition in a Nematic Liquid Crystal,” Molecular Crystals and Liquid Crystals, Vol. 352, pp. 435442 (2000). doi: 10.1080/10587250008023155
  36. [36] Barbero, G., Zvezdin, A. K. and Evangelista, L. R., “Ionic Adsorption and Equilibrium Distribution of Charges in a Nematic Cell,” Physics Review E, Vol. 59, No. 2, pp. 18461849 (1999). doi: 10.1103/PhysRevE. 59.1846
  37. [37] Carlton, R. J., Gupta, J. K., Swift, C. L. and Abbott, N. L., “Influence of Simple Electrolytes on the Orientational Ordering of Thermotropic Liquid Crystals at Aqueous Interfaces,” Langmuir, Vol. 28, No. 1, pp. 3136 (2012). doi: 10.1021/la203729t
  38. [38] Lee, W., Wang, C. Y. and Shih, Y. C., “Effects of Carbon Nanosolids on the Electro-Optical Properties of a Twisted Nematic Liquid-Crystal Host,” Applied Physics Letters, Vol. 85, No. 4, pp. 513515 (2004). doi: 10.1063/1.1771799
  39. [39] Lee, C.-W. and Shih, W.-P., “Quantification of Ion Trapping Effect of Carbon Nanomaterials in Liquid Crystals,” Materials Letters, Vol. 64, No. 3, pp. 466 468 (2010). doi: 10.1016/j.matlet.2009.11.049
  40. [40] Koo, W. S., Chung, H. K., Park, H. G., Han, J. J., Jeong, H. C., Cho, M. J., Kim, D. H. and Seo, D. S., “Enhanced Switching Behavior of Iron Oxide Nanoparticle-Doped Liquid-Crystal Display,” Journal of Nanoscience and Nanotechnology, Vol. 14, No. 11, pp. 86098614 (2014). doi: 10.1166/jnn.2014.9953
  41. [41] Gich, M., Fina, I., Morelli, A., Sanchez, F., Alexe, M., Gazquez, J., Fontcuberta, J. and Roig, A., “Multiferroic Iron Oxide Thin Films at Room-Temperature,” Advanced Materials, Vol. 26, No. 27, pp. 46454652 (2014). doi: 10.1002/adma.201400990
  42. [42] Garbovskiy, Y. and Glushchenko, I., “Ion Trapping by Means of Ferroelectric Nanoparticles, and the Quantification of this Process in Liquid Crystals,” Applied Physics Letters, Vol. 107, No. 4, 041106 (2015). doi: 10.1063/1.4926988
  43. [43] Costa, M. R., Altafim, R. A. C. and Mammana, A. P., “Ionic Impurities in Nematic Liquid Crystal Displays,” Liquid Crystals, Vol. 28, No. 12, pp. 17791783 (2001). doi: 10.1080/02678290110078757