Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Hung-Chun Chien This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Electronic Engineering, Jinwen University of Science and Technology, Xindian, Taiwan 231, R.O.C.


 

Received: July 28, 2015
Accepted: January 26, 2016
Publication Date: June 1, 2016

Download Citation: ||https://doi.org/10.6180/jase.2016.19.2.09  


ABSTRACT


This paper presents the design of a compact third-order sinusoidal oscillator based on an operational transresistance amplifier (OTRA). The proposed circuit consists of a single OTRA combined with three resistors and three capacitors. A review of relevant literature revealed that this is the first study to design a third-order sinusoidal oscillator, constructed with a single OTRA and the minimal number of passive components, with independent control of the oscillation condition and frequency. This study involved a review of previous designs as well as related formulations, nonideal analyses, and sensitivity discussions regarding the proposed circuit. Because the proposed circuit features a low-impedance output, it can be applied in cascading and used without additional buffer circuits. This study conducted simulations for the proposed circuit using HSPICE, and used commercially integrated circuits (ICs) and discrete components for circuit implementation and testing to verify its feasibility. Simulation and experimental results confirmed the validity of the proposed oscillator circuit.


Keywords: Active-RC Circuit, Analog Circuit Design, Current-mode Circuit, Norton Amplifier, Operational Transresistance Amplifier (OTRA), Sinusoidal Oscillator


REFERENCES


  1. [1] Franco, S., Design with Operational Amplifiers and Analog Integrated Circuits, New York: McGraw-Hall (2001).
  2. [2] Toumazou, C., Lidegy, F. J. and Haigh, D., Analog IC Design: The Current-Mode Approach, Peter Peregrinus Press, U.K. (1990).
  3. [3] Gonzalez, G., Foundations of Oscillator Circuit Design, Artech House Publishers (2006).
  4. [4] Ozcan, S., Toker, A., Acar, C., Kuntman, H. and Cicekoglu, O., “Single Resistance-controlled Sinusoidal Oscillators Employing Current Differencing Buffered Amplifier,” Microelectron. J., Vol. 31, No. 3, pp. 169174 (2000). doi: 10.1016/S0026-2692(99)00 113-5
  5. [5] Gunes, E. O. and Toker, A., “On the Realization of Oscillators Using State Equations,” Int. J. Electron. Commun., Vol. 56, No. 5, pp. 317326 (2002). doi: 10. 1078/1434-8411-54100119
  6. [6] Bhaskar, D. R. and Senani, R., “New FTFN-Based Grounded Capacitor SRCO with Explicit Currentmode Output and Reduced Number of Resistors,” Int. J. Electron. Commun., Vol. 59, No. 1, pp. 4851 (2005). doi: 10.1016/j.aeue.2004.11.029
  7. [7] Gupta, S. S. and Senani, R., “Grounded Capacitor SRCOs Using a Single Differential Difference Complementary Current Feedback Amplifier,” IET Proc.- Circuits Devices Syst., Vol. 152, No. 1, pp. 3848 (2005). doi: 10.1049/ip-cds:20040976
  8. [8] Prasad, D., Bhaskar, D. R. and Singh, A. K., “Realisation of Single-resistance-controlled Sinusoidal Oscillator: a New Application of the CDTA,” WSEAS Trans. Electron., Vol. 5, No. 6, pp. 257259 (2008).
  9. [9] Chien, H. C. and Chen, C. Y., “CMOS Realization of Single-resistance-controlled and Variable Frequency Dual-mode Sinusoidal Oscillators Employing a Single DVCCTA with All-grounded Passive Components,” Microelectron. J., Vol. 45, No. 2, pp. 226238 (2014). doi: 10.1016/j.mejo.2013.11.007
  10. [10] Chen, J. J., Tsao, H. W. and Chen, C. C., “Operational Transresistance Amplifier Using CMOS Technology,” Electron. Lett., Vol. 28, No. 22, pp. 20872088 (1992). doi: 10.1049/el:19921338
  11. [11] Salama, K. N. and Soliman, A. M., “CMOS Operational Transresistance Amplifier for Analog Signal Processing,” Microelectron. J., Vol. 30, No. 3, pp. 235 245 (1999). doi: 10.1016/S0026-2692(98)00112-8
  12. [12] Chen, J. J., Tsao, H. W., Liu, S. I. and Chiu, W., “Parasitic Capacitance-Insensitive Current-mode Filters Using Operational Transresistance Amplifiers,” IET Proc.- Circuits Devices Syst., Vol. 142, No. 3, pp. 186192 (1995). doi: 10.1049/ip-cds:19951950
  13. [13] Salama, K. N. and Soliman, A. M., “Novel Oscillators Using the Operational Transresistance Amplifier,” Microelectron. J., Vol. 31, No. 1, pp. 3947 (2000). doi: 10.1016/S0026-2692(99)00087-7
  14. [14] Cam, U., “A Novel Single-resistance-controlled Sinusoidal Oscillator Employing Single Operational Transresistance Amplifier,” Analog Integrated Circuits and Signal Processing, Vol. 32, No. 2, pp. 183186 (2002).
  15. [15] Pandey, R., Pandey, N., Kumar, R. and Solanki, G., “A Novel OTRA Based Oscillator with Non Interactive Control,” In Proceedings of the International Conference on Computer and Communication Technology (ICCCT’10), pp. 658660 (2010). doi: 10.1109/ICCCT. 2010.5640448
  16. [16] Chien, H. C., “New Realizations of Single OTRAbased Sinusoidal Oscillators,” Active and Passive Electronic Components, Vol. 2014, p. 12 (2014). doi: 10. 1155/2014/938987
  17. [17] Avireni, S. and Pittala, C. S., “Grounded Resistance/ capacitance-controlled Sinusoidal Oscillators Using Operational Transresistance Amplifier,” WSEAS Transactions on Circuits and Systems, Vol. 13, pp. 145152 (2014).
  18. [18] Gupta, A., Senani, R., Bhaskar, D. R. and Singh, A. K., “OTRA-based Grounded-FDNR and Grounded-inductance Simulators and their Applications,” Circuits Syst Signal Process, Vol. 31, No. 2, pp. 489499 (2012). doi: 10.1007/s00034-011-9345-2
  19. [19] Cakir, C., Cam, U. and Cicekoglu, O., “Novel Allpass Filter Configuration Employing Single OTRA,” IEEE Trans. on Circuits and Systems-II: Express Briefs, Vol. 52, No. 3, pp. 122125 (2005). doi: 10.1109/TCSII. 2004.842055
  20. [20] Kilinc, S. and Cam, U., “Cascadable Allpass and Notch Filters Employing Single Operational Transresistance Amplifier,” Computers and Electrical Engineering, Vol. 31, No. 6, pp. 391401 (2005). doi: 10.1016/j. compeleceng.2005.06.001
  21. [21] Pandey, R. and Bothra, M., “Multiphase Sinusoidal Oscillators Using Operational Trans-resistance Amplifier,” In Proceedings of the IEEE Symposium on Industrial Electronics and Applications (ISIEA’09), pp. 371376 (2009). doi: 10.1109/ISIEA.2009.5356432
  22. [22] Prommee, P. and Dejhan, K., “An Integrable Electronic-controlled Quadrature Sinusoidal Oscillator Using CMOS Operational Transconductance Amplifier,” Int. J. Electron., Vol. 89, No. 5, pp. 365379 (2002). doi: 10.1080/713810385
  23. [23] Horng, J. W., Lee, H. and Wu, J. Y., “Electronically Tunable Third-order Quadrature Oscillator Using CDTAs,” Radioengineering, Vol. 19, No. 2, pp. 326 330 (2010).
  24. [24] Maheshwari, S. and Khan, I. A., “Current-mode Thirdorder Quadrature Oscillator,” IET Proc.-Circuits Devices Syst., Vol. 4, No. 3, pp. 188195 (2010). doi: 10. 1049/iet-cds.2009.0259
  25. [25] Horng, J. W., “Current/voltage-mode Third Order Quadrature Oscillator Employing Two Multiple Outputs CCIIs and Grounded Capacitors,” Indian Journal of Pure and Applied Physics, Vol. 49, No. 7, pp. 494498 (2011).
  26. [26] Chaturvedi, B. and Maheshwari, S., “Third-order Quadrature Oscillator Circuit with Current and Voltage Outputs,” ISRN Electronics, Vol. 2013, p. 8 (2013). doi: 10.1155/2013/385062
  27. [27] Pandey, R., Pandey, N., Komanapalli, G. and Anurag, R., “OTRA Based Voltage Mode Third Order Quadrature Oscillator,” ISRN Electronics, Vol. 2014, p. 5 (2014). doi: 10.1155/2014/126471
  28. [28] Toker, A., Ozoguz, S., Cicekoglu, O. and Acar, C., “Current-mode All-pass Filters Using Current Differencing Buffered Amplifier and a New High-Q Bandpass Filter Configuration,” IEEE Trans. on Circuits and Systems-II: Express Briefs, Vol. 47, No. 9, pp. 949954 (2000). doi: 10.1109/82.868465
  29. [29] Analog Devices AD844AN Data Sheet.