Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

L. Zhang This email address is being protected from spambots. You need JavaScript enabled to view it.1, J. Lu1, H. Takagi1 and R. Maeda1

1Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan


 

Received: May 1, 2013
Accepted: October 10, 2013
Publication Date: December 1, 2013

Download Citation: ||https://doi.org/10.6180/jase.2013.16.4.01  


ABSTRACT


Nanowires have attracted considerable interest as the nanoscale interconnects and as the moving elements of both electronic and electromechanical devices. The evaluation of nanomechanical property plays a significant role in the development of new nanowire-based devices. Recently, we are engaged in developing an easy method for nanomechanical measurement by using an in-plane-mode piezoresistive vibration sensor fabricated with less process cost and package difficulties. Theoretical analysis and simulation results suggested that the device is capable of high-sensitive and variety, and it is expected to evaluate mechanical properties of metallic or metallic oxide nanowires.


Keywords: Nanowires, Mechanical Property, MEMS, Piezoresistive Sensor


REFERENCES


  1. [1] Samuel, B. A., Desai, A. V. and Haque, M. A., “Design and Modeling of a MEMS Pico-Newton Loading/ Sensing Device,” Sensors and Actuators A, Vol. 127, pp. 155162 (2006). doi: 10.1016/j.sna.2005.11.018
  2. [2] Desai, A. V. and Haque, M. A., “Mechanical Properties of ZnO Nanowires,” Sensor and Actuators A, Vol. 134, pp. 169176 (2007). doi: 10.1016/j.sna.2006.04. 046
  3. [3] Budrovic, Z., Swygenhoven, H. V., Derlet, P. M., Petegem, S. V. and Schmitt, B., “Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel,” Science, Vol. 304, pp. 273276 (2004). doi: 10.1126/science.1095071
  4. [4] Lu, L., Shen,Y. F., Chen, X. H., Qian, L. H. and Lu, K., “Ultrahigh Strength and High Electrical Conductivity in Copper,” Science, Vol. 304, pp. 422426 (2004). doi: 10.1126/science.1092905
  5. [5] Lee, S. K., Choi, H. J., Pauzauskie, P., Yang, P., Cho, N. K., Park, H. D., Suh, E. K., Lim, K. Y. and Lee, H. J., “Gallium Nitride Nanowires with a Metal Initiated Metal-Organic Chemical Vapor Deposition Approach,” Physics Status Solid C, Vol. 241, pp. 27752778 (2004). doi: 10.1002/pssb.200404989
  6. [6] Wang, Z. L., Poncharal, P. and de Heer, W. A., “Nanomeasurements of Individual Carbon Nanotubes by InSitu TEM,” Pure and Applied Chemistry, Vol. 72, pp. 209219 (2000). doi: 10.1351/pac200072010209
  7. [7] Champion, Y., Langlois, C., Guérin-Mailly, S., Langlois, P., Bonnentien, J. L. and Hÿtch, M. J., “Near-Perfec Elastoplasticity in Pure Nanocrystalline Copper,” Science, Vol. 300, pp. 310311 (2003). doi: 10.1126/ science.1081042
  8. [8] Wu, B., Heidelberg, A. and Boland, J. J., “Mechanical Properties of Ultrahigh-Strength Gold Nanowires,” Nature Material, Vol. 4, pp. 525529 (2005). doi: 10.1038/nmat1403
  9. [9] Ju, Y., Amano, M. and Chen, M., “Mechanical and Electrical Cold Bonding Based on Metallic Nanowire Surface Fasteners,” Nanotechnology, Vol. 23, pp. 365202 (2012). doi: 10.1088/0957-4484/23/36/365202
  10. [10] Wang, P., Ju, Y., Hosoi, A. and Song, Y. H., “Room-Temperature Bonding Technique Based on Copper Nanowire Surface Fastener,” Applied Physics Express, Vol. 6, pp. 035001 (2013). doi: 10.7567/APEX.6.035001
  11. [11] Yue, Y., Chen, M., Ju, Y. and Zhang, L., “Stress-Induced Growth of Well-Aligned Cu2O Nanowire Arrays and Their Photovoltaic Effect,” Scripta Materialia, Vol. 66, pp. 8184 (2012). doi: 10.1016/j. scriptamat.2011.09.041
  12. [12] Zhang, L., Lu, J., Takagi, H. and Maeda, R., “A Theoretical Study on Sensitivity of Planar Piezoresistive Vibration Sensor,” Japanese Journal of Applied Physics, Vol. 52, pp. 106502 (2013).