L. Zhang 1, J. Lu1, H. Takagi1 and R. Maeda1
1Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
Received:
May 1, 2013
Accepted:
October 10, 2013
Publication Date:
December 1, 2013
Download Citation:
||https://doi.org/10.6180/jase.2013.16.4.01
ABSTRACT
Nanowires have attracted considerable interest as the nanoscale interconnects and as the moving elements of both electronic and electromechanical devices. The evaluation of nanomechanical property plays a significant role in the development of new nanowire-based devices. Recently, we are engaged in developing an easy method for nanomechanical measurement by using an in-plane-mode piezoresistive vibration sensor fabricated with less process cost and package difficulties. Theoretical analysis and simulation results suggested that the device is capable of high-sensitive and variety, and it is expected to evaluate mechanical properties of metallic or metallic oxide nanowires.
Keywords:
Nanowires, Mechanical Property, MEMS, Piezoresistive Sensor
REFERENCES
- [1] Samuel, B. A., Desai, A. V. and Haque, M. A., “Design and Modeling of a MEMS Pico-Newton Loading/ Sensing Device,” Sensors and Actuators A, Vol. 127, pp. 155162 (2006). doi: 10.1016/j.sna.2005.11.018
- [2] Desai, A. V. and Haque, M. A., “Mechanical Properties of ZnO Nanowires,” Sensor and Actuators A, Vol. 134, pp. 169176 (2007). doi: 10.1016/j.sna.2006.04. 046
- [3] Budrovic, Z., Swygenhoven, H. V., Derlet, P. M., Petegem, S. V. and Schmitt, B., “Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel,” Science, Vol. 304, pp. 273276 (2004). doi: 10.1126/science.1095071
- [4] Lu, L., Shen,Y. F., Chen, X. H., Qian, L. H. and Lu, K., “Ultrahigh Strength and High Electrical Conductivity in Copper,” Science, Vol. 304, pp. 422426 (2004). doi: 10.1126/science.1092905
- [5] Lee, S. K., Choi, H. J., Pauzauskie, P., Yang, P., Cho, N. K., Park, H. D., Suh, E. K., Lim, K. Y. and Lee, H. J., “Gallium Nitride Nanowires with a Metal Initiated Metal-Organic Chemical Vapor Deposition Approach,” Physics Status Solid C, Vol. 241, pp. 27752778 (2004). doi: 10.1002/pssb.200404989
- [6] Wang, Z. L., Poncharal, P. and de Heer, W. A., “Nanomeasurements of Individual Carbon Nanotubes by InSitu TEM,” Pure and Applied Chemistry, Vol. 72, pp. 209219 (2000). doi: 10.1351/pac200072010209
- [7] Champion, Y., Langlois, C., Guérin-Mailly, S., Langlois, P., Bonnentien, J. L. and Hÿtch, M. J., “Near-Perfec Elastoplasticity in Pure Nanocrystalline Copper,” Science, Vol. 300, pp. 310311 (2003). doi: 10.1126/ science.1081042
- [8] Wu, B., Heidelberg, A. and Boland, J. J., “Mechanical Properties of Ultrahigh-Strength Gold Nanowires,” Nature Material, Vol. 4, pp. 525529 (2005). doi: 10.1038/nmat1403
- [9] Ju, Y., Amano, M. and Chen, M., “Mechanical and Electrical Cold Bonding Based on Metallic Nanowire Surface Fasteners,” Nanotechnology, Vol. 23, pp. 365202 (2012). doi: 10.1088/0957-4484/23/36/365202
- [10] Wang, P., Ju, Y., Hosoi, A. and Song, Y. H., “Room-Temperature Bonding Technique Based on Copper Nanowire Surface Fastener,” Applied Physics Express, Vol. 6, pp. 035001 (2013). doi: 10.7567/APEX.6.035001
- [11] Yue, Y., Chen, M., Ju, Y. and Zhang, L., “Stress-Induced Growth of Well-Aligned Cu2O Nanowire Arrays and Their Photovoltaic Effect,” Scripta Materialia, Vol. 66, pp. 8184 (2012). doi: 10.1016/j. scriptamat.2011.09.041
- [12] Zhang, L., Lu, J., Takagi, H. and Maeda, R., “A Theoretical Study on Sensitivity of Planar Piezoresistive Vibration Sensor,” Japanese Journal of Applied Physics, Vol. 52, pp. 106502 (2013).