Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Hazem A. Attia This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Karem M. Ewis1

1Department of Engineering Mathematics and Physics, Faculty of Engineering, Fayoum University, Fayoum, Egypt


 

Received: May 2, 2006
Accepted: July 12, 2006
Publication Date: March 1, 2011

Download Citation: ||https://doi.org/10.6180/jase.2011.14.1.01  


ABSTRACT


The steady hydromagnetic laminar flow of an incompressible non-Newtonian micropolar fluid impinging on a plane wall with heat transfer is investigated. A uniform magnetic field is applied normal to the plate which is maintained at a constant temperature. Numerical solution for the governing nonlinear momentum and energy equations is obtained. The effect of the uniform magnetic field and the characteristics of the non-Newtonian fluid on both the flow and heat transfer is presented and discussed.


Keywords: Stagnation Point Flow, Non-Newtonian Fluid, Magnetic Field, Numerical Solution, Heat Transfer


REFERENCES


  1. [1] Hiemenz, K., Dingler Polytech. J., Vol. 326, p. 321 (1911).
  2. [2] Homann, F. and Angew, Z., Math. Mech., Vol. 16, p. 153 (1936).
  3. [3] Schlichting, H. and Bussmann, K., Schri. Dtsch. Akad. Luftfahrtforschung, Ser. B, Vol. 7, p. 25 (1943).
  4. [4] Preston, J. H., Reports and Memoirs, British Aerospace Research Council, London, No. 2244 (1946).
  5. [5] Ariel, P. D., J. Appl. Mech., Vol. 61, p. 976 (1994).
  6. [6] Weidman, P. D. and Mahalingam, S., J. Engg. Math., Vol. 31, p. 305 (1997).
  7. [7] Na, T. Y., Computational Methods in Engineering Boundary Value Problem, Academic Press, New York, p. 107 (1979).
  8. [8] Ariel, P. D., Acta Mech., Vol. 103, p. 31 (1994).
  9. [9] Attia, H. A., Arab. J. Sci. Engg., Vol. 28, p. 107 (2003).
  10. [10] Attia, H. A., Can. J. Phys., Vol. 81, p. 1223 (2003).
  11. [11] Massoudi, M. and Ramezan, M., ASME HTD, Vol. 130, p. 81 (1990).
  12. [12] Massoudi, M. and Ramezan, M., Mech. Res. Commun., Vol. 19, p. 129 (1992).
  13. [13] Garg, V. K., Acta Mech., Vol. 104, p. 159 (1994).
  14. [14] Rajeshwari, G. K. and Rathna, S. L. and Angew, Z., Math. Phys., Vol. 13, p. 43 (1962).
  15. [15] Beard, D. W. and Walters, K., Proc. Cambridge Philos. Soc., Vol. 14, p. 757 (1992).
  16. [16] Teipel, I., Rheological Acta., Vol. 25, p. 75 (1986).
  17. [17] Ariel, P., D., International J. Numerical Methods Fluids., Vol. 14, p. 757 (1992).
  18. [18] Djukic, D. S., ASME J. Appl. Mech., Vol. 40, p. 822 (1974).
  19. [19] Teipel, I., CSME Trans., Vol. 12, p. 57 (1988).
  20. [20] Ariel, P. D., J. Comput. Appl. Math., Vol. 59, p. 9 (1995).
  21. [21] Attia, H. A., Can. J. Phys., Vol. 78, p. 875 (2000).
  22. [22] Nath, G., Rheological Acta, Vol. 14, p. 850 (1975).
  23. [23] Nazar, R., Amin, N., Filip, D. and Pop, I., International J. of Non-Linear Mechanics, Vol. 39, p. 1227 (2004).
  24. [24] Sutton, G. W. and Sherman, A., Engineering Magnetohydrodynamics, McGraw-Hill, New York (1965).