REFERENCES
- [1] Wong, C. H. and Whitesides, G. M. Enzymes in Synthetic Organic Chemistry, Elsevier, Tarrytown, NY (1994).
- [2] Faber, K. Biotransformations in organic chemistry, Springer-Verlag, Berlin (1997).
- [3] Balcao, V. M., Paiva, A. L. and Malcata, F. X., “Adsorption of protein from several commercial lipase preparation onto a hollow fiber membrane module”, Enzyme Microb. Technol., vol. 18, pp. 392-416 (1996).
- [4] Wisodn, R. A., Dunnill, P. and Lilly, M. D., “Enzymic interesterification of fats: factors influencing the choice of support for immobilized lipase”, Enzyme Microb. Technol., vol. 6, pp. 443-446 (1984).
- [5] Shaw, J. F. and Wang, D. L., “Lipase-catalyzed ethanolysis and isopropanolysis of triglycrides with long-chain fatty acids”, Enzyme Microb. Technol., vol. 13, pp. 544-546 (1991).
- [6] Mustranta, A., Forssell, P. and Poutanen, K., “Applications of immobilized lipases to transesterification and esterification reactions in nonaqueous systems”, Enzyme Microb. Technol., vol. 15, pp. 133-139 (1993).
- [7] Kaga, K., Siegmund, B., Neufellner, E. and Faber, K., “Stabilization of Candida lipase against acetaldehyde by adsorption onto celite”, Biotechnol. Techniq., vol. 8, pp. 369-374 (1994).
- [8] Lee, K-T. and Akoh, C. C., “Immobilization of lipases on clay, Celite 545, diethylaminoethyl-, and carboxymethyl-Sephadex and their interesterification activity”, Biotechnol. Techniq., vol. 12, pp. 381-384 (1998).
- [9] Cao, L., Bornscheuer, U. T. and Schmid, R. D., “Lipase-catalyzed solid-phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme”, J. Mol. Catal. B: Enzym., vol. 6, pp. 279-285 (1999).
- [10] Chang, Q-L., Lee, C-H. and Parkin, K.L., “Comparative selectivities of immobilized lipases from Pseudomonas cepacia and Candida antactica (fraction B) for esterification reactions with glycerol and glycerol analogues in organic media”, Enzyme Microb. Technol., vol. 25, pp. 290-297 (1999).
- [11] Akova, A. and Ustun, G., “Activity and adsorption of lipase from Nigella sativa seeds on Celite at different pH values”, Biotechnol. Lett., vol. 22, pp. 355-359 (2000).
- [12] Khare, S. K. and Nakajima, M., “Immobilization of Rhizopus japoncius lipase on celite and its application for enrichment of docosahexaenoic acid in soybean oil”, Food Chem., vol. 68, pp. 153-157 (2000).
- [13] Persson, M., Wehtji, E. and Adlercreutz, P., “Immobilisation of lipases by adsorption and desorption: high protein loading gives lower water activity optimum”, Biotechnol. Lett., vol. 22, pp. 1571-1575 (2000).
- [14] Chen, S. J., Cheng, C. Y. and Chen, T. L., “Preparation of an alkaline lipase by Acinetobacter radioresistens”, J. Ferment. and Bioeng., vol. 86, pp. 308-312 (1998).
- [15] Wang, T. L. and Chen, T. L., “Lipase production by Acinetobacter radioresistens in a batch fill-and-draw culture”, Appl. Biochem. Biotechnol., vol. 73, pp. 185-194 (1998).
- [16] Nag, I-S., Tsai, S. W. and Chen, S. J., “Purification and characterization of extracelluar lipase from Acinetobacter radioresistens CMC-2”, J. Chin. Inst. Chem. Engrs., vol. 30, pp. 355-362 (1999).
- [17] Lowell, S. and Shields, J. E., Powder Surface Area and Porosity. Chapman & Hall, London (1991).