- [1] Y. Ding, Q. Zhang, T. Yuan, and K. Yang, (2018) “Model input selection for building heating load prediction: A case study for an office building in Tianjin" Energy and Buildings 159: 254–270. DOI: 10.1016/j.enbuild.2017.11.002.
- [2] Y. Shen, “Load Estimation Models For The Heat Demand Of Buildings: Application Of Optimized Gaussian Process Regression" Journal of Applied Science and Engineering 28(3): 527–541. DOI: 10.6180/jase.202503_ 28(3).0010.
- [3] S. Shamshirband, D. Petkovi´c, R. Enayatifar, A. H. Abdullah, D. Markovi´c, M. Lee, and R. Ahmad, (2015) “Heat load prediction in district heating systems with adaptive neuro-fuzzy method" Renewable and Sustainable Energy Reviews 48: 760–767. DOI: 10.1016/j.rser.2015.04.020.
- [4] P. Ming, (2024) “Hybrid machine learning application with integration of meta-heuristic algorithm for prediction of cooling load" Multiscale and Multidisciplinary Modeling, Experiments and Design: 1–17. DOI: 10.1007/s41939-024-00463-x.
- [5] E. Guelpa, L. Marincioni, M. Capone, S. Deputato, and V. Verda, (2019) “Thermal load prediction in district heating systems" Energy 176: 693–703. DOI: 10.1016/j.energy.2019.04.021.
- [6] W. Sun, D. Cheng, W. Peng, et al., (2018) “Anomaly detection analysis for district heating apartments" Journal of Applied Science and Engineering 21(1): 33–44. DOI: 10.6180/jase.201803_21(1).0005.
- [7] Q. Zhang, Z. Tian, Z. Ma, G. Li, Y. Lu, and J. Niu, (2020) “Development of the heating load prediction model for the residential building of district heating based on model calibration" Energy 205: 117949. DOI: 10.1016/j.energy.2020.117949.
- [8] G. Xue, C. Qi, H. Li, X. Kong, and J. Song, (2020) “Heating load prediction based on attention long short term memory: A case study of Xingtai" Energy 203: 117846. DOI: 10.1016/j.energy.2020.117846.
- [9] Y. Zhang, Z. Zhou, J. Liu, and J. Yuan, (2022) “Data augmentation for improving heating load prediction of heating substation based on TimeGAN" Energy 260: 124919. DOI: 10.1016/j.energy.2022.124919.
- [10] J. Zhang, Y. Huang, H. Cheng, H. Chen, L. Xing, and Y. He, (2023) “Ensemble learning-based approach for residential building heating energy prediction and optimization" Journal of Building Engineering 67: 106051. DOI: 10.1016/j.jobe.2023.106051.
- [11] J. Yuan, Z. Zhou, H. Tang, C. Wang, S. Lu, Z. Han, J. Zhang, and Y. Sheng, (2020) “Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system" Energy 199: 117454. DOI: 10.1016/j.energy.2020.117454.
- [12] J. Guo, S. Yun, Y. Meng, N. He, D. Ye, Z. Zhao, L. Jia, and L. Yang, (2023) “Prediction of heating and cooling loads based on light gradient boosting machine algorithms" Building and Environment 236: 110252. DOI: 10.1016/j.buildenv.2023.110252.
- [13] G. Xue, Y. Pan, T. Lin, J. Song, C. Qi, and Z. Wang, (2019) “District heating load prediction algorithm based on feature fusion LSTM model" Energies 12(11): 2122. DOI: 10.3390/en12112122.
- [14] F. Dalipi, S. Yildirim Yayilgan, and A. Gebremedhin, (2016) “Data-Driven Machine-Learning Model in District Heating System for Heat Load Prediction: A Comparison Study" Applied Computational Intelligence and Soft Computing 2016(1): 3403150. DOI: 10.1155/ 2016/3403150.
- [15] J. Ling, N. Dai, J. Xing, and H. Tong, (2021) “An improved input variable selection method of the data-driven model for building heating load prediction" Journal of Building Engineering 44: 103255. DOI: 10.1016/j.jobe.2021.103255.
- [16] E. Küçüktopcu, (2023) “Comparative analysis of datadriven techniques to predict heating and cooling energy requirements of poultry buildings" Buildings 13(1): 142. DOI: 10.3390/buildings13010142.
- [17] C. Wang, J. Yuan, K. Huang, J. Zhang, L. Zheng, Z. Zhou, and Y. Zhang, (2022) “Research on thermal load prediction of district heating station based on transfer learning" Energy 239: 122309. DOI: 10.1016/j.energy.2021.122309.
- [18] R. Chaganti, F. Rustam, T. Daghriri, I. d. l. T. Díez, J. L. V. Mazón, C. L. Rodríguez, and I. Ashraf, (2022) “Building heating and cooling load prediction using ensemble machine learning model" Sensors 22(19): 7692. DOI: 10.3390/s22197692.
- [19] Y. Lu, Z. Tian, Q. Zhang, R. Zhou, and C. Chu, (2021) “Data augmentation strategy for short-term heating load prediction model of residential building" Energy 235: 121328. DOI: 10.1016/j.energy.2021.121328.
- [20] M. Sajjad, S. U. Khan, N. Khan, I. U. Haq, A. Ullah, M. Y. Lee, and S. W. Baik, (2020) “Towards efficient building designing: Heating and cooling load prediction via multi-output model" Sensors 20(22): 6419. DOI: 10.3390/s20226419.
- [21] B. Sadaghat, S. Afzal, and A. J. Khiavi, (2024) “Residential building energy consumption estimation: a novel ensemble and hybrid machine learning approach" Expert Systems with Applications 251: 123934. DOI: 10.1016/j.eswa.2024.123934.
- [22] Z. Wang, T. Hong, and M. A. Piette, (2020) “Building thermal load prediction through shallow machine learning and deep learning" Applied Energy 263: 114683. DOI: 10.1016/j.apenergy.2020.114683.
- [23] B. Sadaghat, A. Javadzade Khiavi, B. Naeim, E. Khajavi, H. Sadaghat, and A. R. Taghavi Khanghah, (2023) “The utilization of a naıve bayes model for predicting the energy consumption of buildings" Journal of Artificial Intelligence and System Modelling 1(01): 73–91. DOI: 10.22034/JAISM.2023.422292.1003.
- [24] T.-Y. Kim and S.-B. Cho, (2019) “Predicting residential energy consumption using CNN-LSTM neural networks" Energy 182: 72–81. DOI: 10.1016/j.energy.2019.05.230.
- [25] S. S. Roy, P. Samui, I. Nagtode, H. Jain, V. Shivaramakrishnan, and B. Mohammadi-Ivatloo, (2020) “Forecasting heating and cooling loads of buildings: A comparative performance analysis" Journal of Ambient Intelligence and Humanized Computing 11: 1253–1264. DOI: 10.1007/s12652-019-01317-y.
- [26] A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, and A. Anvari-Moghaddam, (2020) “Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings" Applied Sciences 10(11): 3829. DOI: 10.3390/app10113829.
- [27] W. Pessenlehner and A. Mahdavi. Building morphology, transparence, and energy performance. Citeseer, 2003.
- [28] G. Zhou, H. Moayedi, M. Bahiraei, and Z. Lyu, (2020) “Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings" Journal of Cleaner Production 254: 120082. DOI: 10.1016/j.jclepro.2020.120082.
- [29] A. Ghosh, F. Mertens, G. Bernardi, M. G. Santos, N. S. Kern, C. L. Carilli, T. L. Grobler, L. V. Koopmans, D. C. Jacobs, A. Liu, et al., (2020) “Foreground modelling via Gaussian process regression: an application to HERA data" Monthly Notices of the Royal Astronomical Society 495(3): 2813–2826. DOI: 10.1093/mnras/staa1331.
- [30] J. Melo, (2012) “Gaussian processes for regression: a tutorial" Technical Report:
- [31] B. Do˘gan and T. Ölmez, (2015) “A new metaheuristic for numerical function optimization: Vortex Search algorithm" Information sciences 293: 125–145. DOI: 10.1016/j.ins.2014.08.053.
- [32] J. B. Lindsay, (2003) “A physically based model for calculating contributing area on hillslopes and along valley bottoms" Water Resources Research 39(12): DOI: 10.1029/2003WR002576.
- [33] C. Qin, A.-X. Zhu, T. Pei, B. Li, C. Zhou, and L. Yang, (2007) “An adaptive approach to selecting a flowpartition exponent for a multiple-flow-direction algorithm" International Journal of Geographical Information Science 21(4): 443–458. DOI: 10.1080/13658810601073240.
- [34] C. Depraetere, (1989) “Etude g6omorphom6trique du bassin-versant de Booro-Borotou• parfir d’un modulen um6fiqued e terrain: Structure et fonctionnement hydrop6dologique d’un petit bassinversant de savane humide; Equipe HYPERBAV, Collection Etudes et Theses, journ• e hydrop• dologique, Inst. Fr. de Rech. Sci. pour le E• vel. en Cooperation" Inst. Fr. de Rech. Sci. pour le E• vel. en Cooperation, ORSTOM, Montpellier:
- [35] S. Orlandini, G. Moretti, M. Franchini, B. Aldighieri, and B. Testa, (2003) “Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models" Water resources research 39(6): DOI: 10.1029/2002WR001639.
- [36] S. Orlandini and G. Moretti, (2009) “Determination of surface flow paths from gridded elevation data" Water resources research 45(3): DOI: 10.1029/2008WR007099.
- [37] P. Quinn, K. Beven, P. Chevallier, and O. Planchon, (1991) “The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models" Hydrological processes 5(1): 59–79. DOI: 10.1002/hyp.3360050106.
- [38] T. G. Freeman, (1991) “Calculating catchment area with divergent flow based on a regular grid" Computers & geosciences 17(3): 413–422. DOI: 10.1016/0098-3004(91)90048-I.
- [39] D. G. Tarboton, (1997) “A new method for the determination of flow directions and upslope areas in grid digital elevation models" Water resources research 33: 309– 319. DOI: 10.1029/96WR03137.
- [40] A. Botchkarev, (2018) “Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology" arXiv preprint arXiv:1809.03006: DOI: 10.48550/arXiv.1809.03006.
- [41] M. Gong, Y. Bai, J. Qin, J. Wang, P. Yang, and S. Wang, (2020) “Gradient boosting machine for predicting return temperature of district heating system: A case study for residential buildings in Tianjin" Journal of Building Engineering 27: 100950. DOI: 10.1016/j.jobe.2019.100950.
- [42] S. Afzal, B. M. Ziapour, A. Shokri, H. Shakibi, and B. Sobhani, (2023) “Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms" Energy 282: 128446. DOI: 10.1016/j.energy.2023.128446.
- [43] S. S. Roy, P. Samui, I. Nagtode, H. Jain, V. Shivaramakrishnan, and B. Mohammadi-Ivatloo, (2020) “Forecasting heating and cooling loads of buildings: A comparative performance analysis" Journal of Ambient Intelligence and Humanized Computing 11: 1253–1264. DOI: 10.1007/s12652-019-01317-y.
- [44] A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, and A. Anvari-Moghaddam, (2020) “Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings" Applied Sciences 10: 3829. DOI: 10.3390/app10113829.