Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Xiaoyu SunThis email address is being protected from spambots. You need JavaScript enabled to view it.

School of Digital Arts & Design, Dalian Neusoft University of Information, Dalian 116023, Liaoning, China


 

 

Received: March 3, 2024
Accepted: July 2, 2024
Publication Date: August 5, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202506_28(6).0005  


Effectively controlling the heating load (HL) in residential buildings is a vital component of energy conservation and sustainability. This abstract presents a new methodology for predicting HL by incorporating Gaussian Process Regression (GPR) and harnessing the power of two groundbreaking optimization techniques: the Population-based Vortex Search Algorithm (PVS) and the Flow Direction Algorithms (FDA). GPR stands out as a robust machine learning algorithm renowned for its capacity to grasp intricate data relationships. Combining these mentioned optimizers with the GPR model results in a hybrid strategy that harnesses the unique advantages of each element. PVS and FDA are utilized to optimize the GPR’s parameters, thereby elevating its predictive precision. The amalgamation of GPR, PVS, and FDA surpasses conventional techniques and even standalone GPR models regarding predictive precision and convergence velocity. This methodology offers a pragmatic and efficient approach to enhancing the forecast of HL in residential buildings, consequently aiding in better energy management and mitigating environmental impact. The hybrid GPPV model distinguishes itself with its exceptional accuracy when compared to alternative proposed models. Boasting a low RMSE of 1.013 and a R 2 value of 0.990 , GPPV attains the highest performance level. Furthermore, this research paves the way for the exploration of employing nature-inspired optimization techniques alongside neural networks to address a wide array of intricate challenges. The combined influence of GPR and these inventive optimizers highlights the capacity of hybrid models to tackle practical, real-world issues.


Keywords: Heating load, Gaussian Process Regression, Population-based Vortex Search Algorithm, Flow Direction Algorithms.


  1. [1] Y. Ding, Q. Zhang, T. Yuan, and K. Yang, (2018) “Model input selection for building heating load prediction: A case study for an office building in Tianjin" Energy and Buildings 159: 254–270. DOI: 10.1016/j.enbuild.2017.11.002.
  2. [2] Y. Shen, “Load Estimation Models For The Heat Demand Of Buildings: Application Of Optimized Gaussian Process Regression" Journal of Applied Science and Engineering 28(3): 527–541. DOI: 10.6180/jase.202503_ 28(3).0010.
  3. [3] S. Shamshirband, D. Petkovi´c, R. Enayatifar, A. H. Abdullah, D. Markovi´c, M. Lee, and R. Ahmad, (2015) “Heat load prediction in district heating systems with adaptive neuro-fuzzy method" Renewable and Sustainable Energy Reviews 48: 760–767. DOI: 10.1016/j.rser.2015.04.020.
  4. [4] P. Ming, (2024) “Hybrid machine learning application with integration of meta-heuristic algorithm for prediction of cooling load" Multiscale and Multidisciplinary Modeling, Experiments and Design: 1–17. DOI: 10.1007/s41939-024-00463-x.
  5. [5] E. Guelpa, L. Marincioni, M. Capone, S. Deputato, and V. Verda, (2019) “Thermal load prediction in district heating systems" Energy 176: 693–703. DOI: 10.1016/j.energy.2019.04.021.
  6. [6] W. Sun, D. Cheng, W. Peng, et al., (2018) “Anomaly detection analysis for district heating apartments" Journal of Applied Science and Engineering 21(1): 33–44. DOI: 10.6180/jase.201803_21(1).0005.
  7. [7] Q. Zhang, Z. Tian, Z. Ma, G. Li, Y. Lu, and J. Niu, (2020) “Development of the heating load prediction model for the residential building of district heating based on model calibration" Energy 205: 117949. DOI: 10.1016/j.energy.2020.117949.
  8. [8] G. Xue, C. Qi, H. Li, X. Kong, and J. Song, (2020) “Heating load prediction based on attention long short term memory: A case study of Xingtai" Energy 203: 117846. DOI: 10.1016/j.energy.2020.117846.
  9. [9] Y. Zhang, Z. Zhou, J. Liu, and J. Yuan, (2022) “Data augmentation for improving heating load prediction of heating substation based on TimeGAN" Energy 260: 124919. DOI: 10.1016/j.energy.2022.124919.
  10. [10] J. Zhang, Y. Huang, H. Cheng, H. Chen, L. Xing, and Y. He, (2023) “Ensemble learning-based approach for residential building heating energy prediction and optimization" Journal of Building Engineering 67: 106051. DOI: 10.1016/j.jobe.2023.106051.
  11. [11] J. Yuan, Z. Zhou, H. Tang, C. Wang, S. Lu, Z. Han, J. Zhang, and Y. Sheng, (2020) “Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system" Energy 199: 117454. DOI: 10.1016/j.energy.2020.117454.
  12. [12] J. Guo, S. Yun, Y. Meng, N. He, D. Ye, Z. Zhao, L. Jia, and L. Yang, (2023) “Prediction of heating and cooling loads based on light gradient boosting machine algorithms" Building and Environment 236: 110252. DOI: 10.1016/j.buildenv.2023.110252.
  13. [13] G. Xue, Y. Pan, T. Lin, J. Song, C. Qi, and Z. Wang, (2019) “District heating load prediction algorithm based on feature fusion LSTM model" Energies 12(11): 2122. DOI: 10.3390/en12112122.
  14. [14] F. Dalipi, S. Yildirim Yayilgan, and A. Gebremedhin, (2016) “Data-Driven Machine-Learning Model in District Heating System for Heat Load Prediction: A Comparison Study" Applied Computational Intelligence and Soft Computing 2016(1): 3403150. DOI: 10.1155/ 2016/3403150.
  15. [15] J. Ling, N. Dai, J. Xing, and H. Tong, (2021) “An improved input variable selection method of the data-driven model for building heating load prediction" Journal of Building Engineering 44: 103255. DOI: 10.1016/j.jobe.2021.103255.
  16. [16] E. Küçüktopcu, (2023) “Comparative analysis of datadriven techniques to predict heating and cooling energy requirements of poultry buildings" Buildings 13(1): 142. DOI: 10.3390/buildings13010142.
  17. [17] C. Wang, J. Yuan, K. Huang, J. Zhang, L. Zheng, Z. Zhou, and Y. Zhang, (2022) “Research on thermal load prediction of district heating station based on transfer learning" Energy 239: 122309. DOI: 10.1016/j.energy.2021.122309.
  18. [18] R. Chaganti, F. Rustam, T. Daghriri, I. d. l. T. Díez, J. L. V. Mazón, C. L. Rodríguez, and I. Ashraf, (2022) “Building heating and cooling load prediction using ensemble machine learning model" Sensors 22(19): 7692. DOI: 10.3390/s22197692.
  19. [19] Y. Lu, Z. Tian, Q. Zhang, R. Zhou, and C. Chu, (2021) “Data augmentation strategy for short-term heating load prediction model of residential building" Energy 235: 121328. DOI: 10.1016/j.energy.2021.121328.
  20. [20] M. Sajjad, S. U. Khan, N. Khan, I. U. Haq, A. Ullah, M. Y. Lee, and S. W. Baik, (2020) “Towards efficient building designing: Heating and cooling load prediction via multi-output model" Sensors 20(22): 6419. DOI: 10.3390/s20226419.
  21. [21] B. Sadaghat, S. Afzal, and A. J. Khiavi, (2024) “Residential building energy consumption estimation: a novel ensemble and hybrid machine learning approach" Expert Systems with Applications 251: 123934. DOI: 10.1016/j.eswa.2024.123934.
  22. [22] Z. Wang, T. Hong, and M. A. Piette, (2020) “Building thermal load prediction through shallow machine learning and deep learning" Applied Energy 263: 114683. DOI: 10.1016/j.apenergy.2020.114683.
  23. [23] B. Sadaghat, A. Javadzade Khiavi, B. Naeim, E. Khajavi, H. Sadaghat, and A. R. Taghavi Khanghah, (2023) “The utilization of a naıve bayes model for predicting the energy consumption of buildings" Journal of Artificial Intelligence and System Modelling 1(01): 73–91. DOI: 10.22034/JAISM.2023.422292.1003.
  24. [24] T.-Y. Kim and S.-B. Cho, (2019) “Predicting residential energy consumption using CNN-LSTM neural networks" Energy 182: 72–81. DOI: 10.1016/j.energy.2019.05.230.
  25. [25] S. S. Roy, P. Samui, I. Nagtode, H. Jain, V. Shivaramakrishnan, and B. Mohammadi-Ivatloo, (2020) “Forecasting heating and cooling loads of buildings: A comparative performance analysis" Journal of Ambient Intelligence and Humanized Computing 11: 1253–1264. DOI: 10.1007/s12652-019-01317-y.
  26. [26] A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, and A. Anvari-Moghaddam, (2020) “Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings" Applied Sciences 10(11): 3829. DOI: 10.3390/app10113829.
  27. [27] W. Pessenlehner and A. Mahdavi. Building morphology, transparence, and energy performance. Citeseer, 2003.
  28. [28] G. Zhou, H. Moayedi, M. Bahiraei, and Z. Lyu, (2020) “Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings" Journal of Cleaner Production 254: 120082. DOI: 10.1016/j.jclepro.2020.120082.
  29. [29] A. Ghosh, F. Mertens, G. Bernardi, M. G. Santos, N. S. Kern, C. L. Carilli, T. L. Grobler, L. V. Koopmans, D. C. Jacobs, A. Liu, et al., (2020) “Foreground modelling via Gaussian process regression: an application to HERA data" Monthly Notices of the Royal Astronomical Society 495(3): 2813–2826. DOI: 10.1093/mnras/staa1331.
  30. [30] J. Melo, (2012) “Gaussian processes for regression: a tutorial" Technical Report:
  31. [31] B. Do˘gan and T. Ölmez, (2015) “A new metaheuristic for numerical function optimization: Vortex Search algorithm" Information sciences 293: 125–145. DOI: 10.1016/j.ins.2014.08.053.
  32. [32] J. B. Lindsay, (2003) “A physically based model for calculating contributing area on hillslopes and along valley bottoms" Water Resources Research 39(12): DOI: 10.1029/2003WR002576.
  33. [33] C. Qin, A.-X. Zhu, T. Pei, B. Li, C. Zhou, and L. Yang, (2007) “An adaptive approach to selecting a flowpartition exponent for a multiple-flow-direction algorithm" International Journal of Geographical Information Science 21(4): 443–458. DOI: 10.1080/13658810601073240.
  34. [34] C. Depraetere, (1989) “Etude g6omorphom6trique du bassin-versant de Booro-Borotou• parfir d’un modulen um6fiqued e terrain: Structure et fonctionnement hydrop6dologique d’un petit bassinversant de savane humide; Equipe HYPERBAV, Collection Etudes et Theses, journ• e hydrop• dologique, Inst. Fr. de Rech. Sci. pour le E• vel. en Cooperation" Inst. Fr. de Rech. Sci. pour le E• vel. en Cooperation, ORSTOM, Montpellier:
  35. [35] S. Orlandini, G. Moretti, M. Franchini, B. Aldighieri, and B. Testa, (2003) “Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models" Water resources research 39(6): DOI: 10.1029/2002WR001639.
  36. [36] S. Orlandini and G. Moretti, (2009) “Determination of surface flow paths from gridded elevation data" Water resources research 45(3): DOI: 10.1029/2008WR007099.
  37. [37] P. Quinn, K. Beven, P. Chevallier, and O. Planchon, (1991) “The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models" Hydrological processes 5(1): 59–79. DOI: 10.1002/hyp.3360050106.
  38. [38] T. G. Freeman, (1991) “Calculating catchment area with divergent flow based on a regular grid" Computers & geosciences 17(3): 413–422. DOI: 10.1016/0098-3004(91)90048-I.
  39. [39] D. G. Tarboton, (1997) “A new method for the determination of flow directions and upslope areas in grid digital elevation models" Water resources research 33: 309– 319. DOI: 10.1029/96WR03137.
  40. [40] A. Botchkarev, (2018) “Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology" arXiv preprint arXiv:1809.03006: DOI: 10.48550/arXiv.1809.03006.
  41. [41] M. Gong, Y. Bai, J. Qin, J. Wang, P. Yang, and S. Wang, (2020) “Gradient boosting machine for predicting return temperature of district heating system: A case study for residential buildings in Tianjin" Journal of Building Engineering 27: 100950. DOI: 10.1016/j.jobe.2019.100950.
  42. [42] S. Afzal, B. M. Ziapour, A. Shokri, H. Shakibi, and B. Sobhani, (2023) “Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms" Energy 282: 128446. DOI: 10.1016/j.energy.2023.128446.
  43. [43] S. S. Roy, P. Samui, I. Nagtode, H. Jain, V. Shivaramakrishnan, and B. Mohammadi-Ivatloo, (2020) “Forecasting heating and cooling loads of buildings: A comparative performance analysis" Journal of Ambient Intelligence and Humanized Computing 11: 1253–1264. DOI: 10.1007/s12652-019-01317-y.
  44. [44] A. Moradzadeh, A. Mansour-Saatloo, B. Mohammadi-Ivatloo, and A. Anvari-Moghaddam, (2020) “Performance evaluation of two machine learning techniques in heating and cooling loads forecasting of residential buildings" Applied Sciences 10: 3829. DOI: 10.3390/app10113829.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.