Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Elsayed M. E. Zayed1, Mahmoud El–Horbaty1, Mohamed E. M. Alngar2, Mona El–Shater1, Anwar Jaafar Mohamad Jawad3, Anjan Biswas4,5,6,7This email address is being protected from spambots. You need JavaScript enabled to view it., Yakup Yıldırım8,9, and Ali Saleh Alshomrani5

1Department of Mathematics, Faculty of Science, Zagazig University, Zagazig–44519, Egypt

2Basic Science Department, Faculty of Computers and Artificial Intelligence, Modern University for Technology & Information, Cairo–11585, Egypt

3Department of Computer Technical Engineering, Al–Rafidain University College, 10064 Baghdad, Iraq

4Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245–2715, USA

5Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia

6Department of Applied Sciences, Cross–Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati–800201, Romania

7Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa–0204, South Africa

8Department of Computer Engineering, Biruni University, Istanbul–34010, Turkey

9Department of Mathematics, Near East University, 99138 Nicosia, Cyprus



Received: October 31, 2023
Accepted: November 17, 2023
Publication Date: December 26, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  

The current paper addresses white noise in dispersive optical solitons that is governed by the Schrödinger–Hirota equation with parabolic law of nonlinearity. Additional dispersive effects come from the spatio–temporal dispersion and the fourth–order dispersion that are included. The sub–ordinary differential equation method is implemented to retrieve the soliton solutions along with cnoidal waves and their type. The effect of white noise stays confined to the phase of the determined solitons and cnoidal waves.

Keywords: Solitons; Dispersion; White noise; Sub–ODE

  1. [1] A. Borhanifar and R. Abazari, (2010) “Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method" Optics Communications 283: 2026–2031. DOI: 10.1016/j.optcom.2010.01.046.
  2. [2] Y. Chen and Z. Yan, (2006) “The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations" Chaos, Solitons & Fractals 29: 948–964. DOI: 10.1016/j.chaos.2005.08.071.
  3. [3] A. Jawad and M. Abu-AlShaeer, (2023) “Highly dispersive optical solitons with cubic law and cubic-quinticseptic law nonlinearities by two methods" Al-Rafidain Journal of Engineering Sciences 1(1): 1–8.
  4. [4] Z.-L. Li, (2010) “Periodic wave solutions of a generalized KdV-mKdV equation with higher-order nonlinear terms" Zeitschrift für Naturforschung A 65(8-9): 649–657. DOI: 10.1515/zna-2010-8-905.
  5. [5] A.-M. Wazwaz, W. Alhejaili, A. O. AL-Ghamdi, and S. El-Tantawy, (2023) “Bright and dark modulated optical solitons for a (2+ 1)-dimensional optical Schrödinger system with third-order dispersion and nonlinearity" Optik 274: 170582. DOI: 10.1016/j.ijleo.2023.170582.
  6. [6] Z.-P. Yang and W.-P. Zhong, (2012) “Self-trapping of three-dimensional spatiotemporal solitary waves in self-focusing Kerr media" Chinese Physics Letters 29: 064211. DOI: 10.1088/0256-307X/29/6/064211.
  7. [7] Y. Zhen-Ya, (2005) “New Weierstrass semi-rational expansion method to doubly periodic solutions of soliton equations" Communications in Theoretical Physics 43: 391–396. DOI: 10.1088/0253-6102/43/3/003.
  8. [8] W.-P. Zhong, M. R. Beli´c, and T. Huang, (2012) “Twodimensional accessible solitons in PT-symmetric potentials" Nonlinear Dynamics 70: 2027–2034. DOI: 10.1007/s11071-012-0594-9.
  9. [9] E. M. Zayed and M. E. Alngar, (2020) “Application of newly proposed sub-ODE method to locate chirped optical solitons to Triki–Biswas equation" Optik 207: 164360. DOI: 10.1016/j.ijleo.2020.164360.
  10. [10] E. M. Zayed, K. A. Gepreel, M. E. Alngar, A. Biswas, A. Dakova, M. Ekici, H. M. Alshehri, and M. R. Belic, (2021) “Cubic–quartic solitons for twin-core couplers in optical metamaterials" Optik 245: 167632. DOI: 10.1016/j.ijleo.2021.167632.
  11. [11] S. Wang, (2023) “Novel soliton solutions of CNLSEs with Hirota bilinear method" Journal of Optics 52: 1602–1607. DOI: 10.1007/s12596-022-01065-x.
  12. [12] B. Kopçasız and E. Ya¸sar, (2022) “The investigation of unique optical soliton solutions for dual-mode nonlinear Schrödinger’s equation with new mechanisms" Journal of Optics 52: 1513–1527. DOI: 10.1007/s12596-022-00998-7.
  13. [13] L. Tang, (2023) “Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings" Journal of Optics 52: 1388–1398. DOI: 10.1007/s12596-022-00963-4.
  14. [14] T. N. Thi and L. C. Van, (2023) “Supercontinuum generation based on suspended core fiber infiltrated with butanol" Journal of Optics:–6. DOI: 10.1007/s12596-023-01323-6.
  15. [15] Z. Li and E. Zhu, (2023) “Optical soliton solutions of stochastic Schrödinger–Hirota equation in birefringent fibers with spatiotemporal dispersion and parabolic law nonlinearity" Journal of Optics: https: //–7.  DOI: 10.1007/s12596-023-01287-7.
  16. [16] T. Han, Z. Li, C. Li, and L. Zhao, (2023) “Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg–Landau equation with nonlinear chromatic dispersion in non-Kerr law media" Journal of Optics 52: 831–844. DOI: 10.1007/s12596-022-01041-5.
  17. [17] L. Tang, (2023) “Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas–Lenells equation" Journal of Optics: https: //–x. DOI: 10.1007/s12596-023-01097-x.
  18. [18] S. Nandy and V. Lakshminarayanan, (2015) “Adomian decomposition of scalar and coupled nonlinear Schrödinger equations and dark and bright solitary wave solutions" Journal of Optics 44: 397–404. DOI: 10.1007/s12596-015-0270-9.
  19. [19] W. Chen, M. Shen, Q. Kong, and Q. Wang, (2015) “The interaction of dark solitons with competing nonlocal cubic nonlinearities" Journal of Optics 44: 271–280. DOI: 10.1007/s12596-015-0255-8.
  20. [20] S.-L. Xu, N. Petrovi´c, and M. R. Beli´c, (2015) “Twodimensional dark solitons in diffusive nonlocal nonlinear media" Journal of Optics 44: 172–177. DOI: 10.1007/s12596-015-0243-z.
  21. [21] R. K. Dowluru and P. R. Bhima, (2011) “Influences of third-order dispersion on linear birefringent optical soliton transmission systems" Journal of Optics 40: 132–142. DOI: 10.1007/s12596-011-0045-x.
  22. [22] M. Singh, A. K. Sharma, and R. Kaler, (2011) “Investigations on optical timing jitter in dispersion managed higher order soliton system" Journal of Optics 40: 1–7. DOI: 10.1007/s12596-010-0021-x.
  23. [23] V. Janyani, (2008) “Formation and PropagationDynamics of Primary and Secondary Soliton-Like Pulses in Bulk Nonlinear Media" Journal of Optics 37: 1–8. DOI: 10.1007/bf03354831.
  24. [24] A. Hasegawa, (2004) “Application of Optical Solitons for Information Transfer in Fibers—A Tutorial Review" Journal of Optics 33: 145–156. DOI: 10.1007/bf03354760.
  25. [25] A. Mahalingam, A. Uthayakumar, and P. Anandhi, (2013) “Dispersion and nonlinearity managed multisoliton propagation in an erbium doped inhomogeneous fiber with gain/loss" Journal of Optics 42: 182–188. DOI: 10.1007/s12596-012-0105-x.



69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.