Xin Li1 and Lesheng Xing This email address is being protected from spambots. You need JavaScript enabled to view it.2

1School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China


Received: January 4, 2022
Accepted: June 22, 2022
Publication Date: August 19, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  


In view of the large fluctuation of the output current of the charging system caused by the mutual inductance perturbation of the coupling mechanism and the load disturbance of the vehicle power battery in the process of mobile wireless charging of electric vehicles, a passivity-based control strategy of the mobile wireless charging system based on EL (Euler Lagrange) model is proposed to realize the constant current charging of electric vehicles. Firstly, the working principle of D-LCC mobile wireless charging system is analyzed. Based on the dynamic model of mobile wireless charging system and the large signal model in rotating coordinate system, the EL model is obtained by using the mutual inductance coupling theory. Then, the passivity-based controller (PBC) based on the EL model is designed from the perspective of energy, and the passive stability of the system is analyzed. Finally, the proposed control strategy is verified based on MATLB / Simulink simulation platform and compared with the traditional PI controller. The simulation results show that PBC controller has stronger robustness than PI controller in the case of external disturbance.

Keywords: Passivity-based control, D-LCC compensation, robustness, Constant current charging


  1. [1] A. Mahesh, B. Chokkalingam, and L. Mihet-Popa, (2021) “Inductive Wireless Power Transfer Charging for Electric Vehicles–A Review" IEEE Access 9: 137667–137713. DOI: 10.1109/ACCESS.2021.3116678.
  2. [2] P. K. Chittoor and B. C. “Solar Integrated Wireless Drone Charging System for Smart City Applications”. In: 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA). IEEE. 2021, 407–412. DOI: 10.1109/ICCCA52192.2021.9666263.
  3. [3] K. A. Kalwar, M. Aamir, and S. Mekhilef, (2015) “Inductively coupled power transfer (ICPT) for electric vehicle charging–A review" Renewable and Sustainable Energy Reviews 47: 462–475. DOI: 10.1016/j.rser.2015.03.040.
  4. [4] P. K. Chittoor, B. Chokkalingam, and L. Mihet-Popa, (2021) “A review on UAV wireless charging: Fundamentals, applications, charging techniques and standards" IEEE access 9: 69235–69266. DOI: 10.1109/ACCESS.2021.3077041.
  5. [5] S. Chatterjee, A. Iyer, C. Bharatiraja, I. Vaghasia, and V. Rajesh, (2017) “Design optimisation for an efficient wireless power transfer system for electric vehicles" Energy Procedia 117: 1015–1023. DOI: 10.1016/j.egypro.2017.05.223.
  6. [6] P. K. Chittoor and C. Bharatiraja, (2022) “Drone Operated Bidirectional Wireless Charging System for Energy Constrained Devices in Smart Farming Applications" ECS Transactions 107(1): 11867. DOI: 10.1149/10701.11867ecst.
  7. [7] M. Aganti and C. Bharatiraja, (2022) “Integrated Double-Sided LCC Compensation Topology for an Electric Vehicle Wireless Charging System" ECS Transactions 107(1): 15587. DOI: 10.1149/10701.15587ecst.
  8. [8] M. Aganti and C. Bharatiraja, (2022) “New Magnetic Coupling Pad with Circular Geometry for Wireless Power Transfer Applications" ECS Transactions 107(1): 15965. DOI: 10.1149/10701.15965ecst.
  9. [9] R. Narayanamoorthi, A. V. Juliet, and B. Chokkalingam, (2019) “Cross interference minimization and simultaneous wireless power transfer to multiple frequency loads using frequency bifurcation approach" IEEE Transactions on Power Electronics 34(11): 10898–10909. DOI: 10.1109/TPEL.2019.2898453.
  10. [10] Y. M. Roshan and E. J. Park, (2017) “Design approach for a wireless power transfer system for wristband wearable devices" IET Power Electronics 10(8): 931–937. DOI: 10.1049/iet-pel.2016.0616.
  11. [11] W. Zhang, X. Fan, Y. Zheng, and X. Zhang. “Application of Sliding Mode Control with Leakage Loop Modulation in DynamicWireless Charging System of Electric Vehicle”. In: 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 1. IEEE. 2019, 262–265. DOI: 10.1109/ISCID.2019.00067.
  12. [12] W. Lihao and Z. Bo, (2020) “Overview of static wireless charging technology for electric vehicles: part I" Transactions of China Electrotechnical Society 35(6): 1153–1165. DOI: 10.19595/j.cnki.1000-6753.tces.190106.
  13. [13] X. Li and X. Li, (2020) “Passivity-based control for movable multi-load inductively coupled power transfer system based on PCHD model" IEEE Access 8: 100810–100823. DOI: 10.1109/ACCESS.2020.2997989.
  14. [14] X. Dai and Y. Sun, (2011) “Study on energy injection control method for inductive power transfer system" J. Univ. Electron. Sci. Technol. China 40: 69–72.
  15. [15] J. Zhou, F. Wu, and Z. Rong, (2015) “Modeling and Analysis of LCL Type IPT System with Generalized State Space Averaging Method" Bulletin of Science and Technology:
  16. [16] J.-J.Wu, X.-F. Sun, andW.-y.Wu, (2011) “Study of Modeling of Resonant Converter Based on Extended Describing Function Method" Dianli Dianzi Jishu/ Power Electronics 45(4): 22–24.
  17. [17] S. Xujian and Z. Bo, (2017) “Energy model and characteristic analysis for inductively coupled power transfer system" Automation of Electric Power Systems 41(2): 28–32. DOI: 10.7500/AEPS20161007002.
  18. [18] T.-D. Yeo, D. Kwon, S.-T. Khang, and J.-W. Yu, (2016) “Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank" IEEE Transactions on Power Electronics 32(1): 471–478. DOI: 10.1109/TPEL.2016.2523121.
  19. [19] H. Li, J. Li, K. Wang, W. Chen, and X. Yang, (2014) “A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling" IEEE Transactions on Power Electronics 30(7): 3998–4008. DOI: 10.1109/TPEL.2014.2349534.
  20. [20] K. Song, Z. Li, J. Jiang, and C. Zhu, (2017) “Constant current/voltage charging operation for series–series and series–parallel compensated wireless power transfer systems employing primary-side controller" IEEE Transactions on Power Electronics 33(9): 8065–8080. DOI:10.1109/TPEL.2017.2767099.
  21. [21] S. Assawaworrarit, X. Yu, and S. Fan, (2017) “Robust wireless power transfer using a nonlinear parity–timesymmetric circuit" Nature 546(7658): 387–390. DOI: 10.1038/nature22404.
  22. [22] W. Li, H. Zhao, J. Deng, S. Li, and C. C. Mi, (2015) “Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers" IEEE Transactions on Vehicular Technology 65(6): 4429–4439. DOI: 10.1109/TVT.2015.2479938.
  23. [23] V. P. Galigekere, J. Pries, O. C. Onar, G.-J. Su, S. Anwar, R.Wiles, L. Seiber, and J.Wilkins. “Design and implementation of an optimized 100 kW stationary wireless charging system for EV battery recharging”. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE. 2018, 3587–3592. DOI: 10.1109/ECCE.2018.8557590.
  24. [24] N. Ali, Z. Liu, Y. Hou, H. Armghan, X. Wei, and A. Armghan, (2020) “LCC-S based discrete fast terminal sliding mode controller for efficient charging through wireless power transfer" Energies 13(6): 1370. DOI: 10.3390/en13061370.
  25. [25] J. Zhao, Z. Zhang, and K. Zhang, (2022) “H" Diangong Jishu Xuebao/Transactions of China Electrotechnical Society 37(3): 566–577.
  26. [26] A. Lassioui, H. EL Fadil, A. Rachid, T. Bouanou, and F. Giri, (2021) “Adaptive Output Feedback Nonlinear Control of a Wireless Power Transfer Charger for Battery Electric Vehicle" Journal of Control, Automation and Electrical Systems 32(2): 492–506. DOI: 10.1007/s40313-020-00670-0.
  27. [27] X. Hu, Y.Wang, S. Lv, X. Dong, T. Chen, Y. Jiang, and P. Xu. “Discrete time modeling of wireless power transfer system using LCC compensation topology”. In: 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia). IEEE. 2019, 968–973.
  28. [28] C. Feibin, M. Ruikun, L. Yong, et al., (2018) “Efficiency optimization of three-coil structure wireless power transfer system based on frequency-varied control" Transactions of China Electrotechnical Society 33(S2): 313–320. DOI: 10.19595/j.cnki.1000-6753.tces.180884.
  29. [29] Y. Chen, H. Zhang, S.-J. Park, and D.-H. Kim, (2019) “A switching hybrid LCC-S compensation topology for constant current/voltage EV wireless charging" Ieee Access 7: 133924–133935. DOI: 10.1109/ACCESS.2019.2941652.
  30. [30] R. V. Meshram, M. Bhagwat, S. Khade, S. R. Wagh, A. M. Stankovic, and N. M. Singh, (2017) “Portcontrolled phasor Hamiltonian modeling and IDA-PBC control of solid-state transformer" IEEE Transactions on Control Systems Technology 27(1): 161–174. DOI:10.1109/TCST.2017.2761866.
  31. [31] Y. I. Son and I. H. Kim, (2011) “Complementary PID controller to passivity-based nonlinear control of boost converters with inductor resistance" IEEE Transactions on control systems technology 20(3): 826–834. DOI:10.1109/TCST.2011.2134099.
  32. [32] J. Zeng, Z. Zhang, and W. Qiao, (2013) “An interconnection and damping assignment passivity-based controller for a DC–DC boost converter with a constant power load" IEEE Transactions on Industry Applications 50(4): 2314–2322. DOI: 10.1109/TIA.2013.2290872.
  33. [33] H. Mohomad, S. Saleh, and L. Chang, (2017) “Disturbance estimator-based predictive current controller for single-phase interconnected PV systems" IEEE Transactions on Industry Applications 53(5): 4201–4209. DOI: 10.1109/TIA.2017.2716363.
  34. [34] M. Hilairet, M. Ghanes, O. Béthoux, V. Tanasa, J. P. Barbot, and D. Normand-Cyrot, (2013) “A passivity based controller for coordination of converters in a fuel cell system" Control engineering practice 21(8): 1097–1109. DOI: 10.1016/j.conengprac.2013.04.003.
  35. [35] Y. Liu, J. Xu, Z. Shuai, Y. Li, G. Cui, S. Hu, and B. Xie, (2020) “Passivity-based decoupling control strategy of single-phase LCL-type VSRs for harmonics suppression in railway power systems" International Journal of Electrical Power & Energy Systems 117: 105698. DOI:10.1016/j.ijepes.2019.105698.
  36. [36] O. D. Montoya, W. Gil-González, and A. Garces, (2019) “Distributed energy resources integration in single phase microgrids: An application of IDA-PBC and PIPBC approaches" International Journal of Electrical Power & Energy Systems 112: 221–231. DOI: 10.1016/j.ijepes.2019.04.046.
  37. [37] K. Nunna, M. Sassano, and A. Astolfi, (2015) “Constructive interconnection and damping assignment for port-controlled Hamiltonian systems" IEEE Transactions on Automatic Control 60(9): 2350–2361. DOI: 10.1109/TAC.2015.2400663.
  38. [38] Z. Liu, Z. Geng, and X. Hu, (2018) “An approach to suppress low frequency oscillation in the traction network of high-speed railway using passivity-based control" IEEE Transactions on Power Systems 33(4): 3909–3918. DOI: 10.1109/TPWRS.2018.2789450.
  39. [39] Z. Liu, Z. Geng, S.Wu, X. Hu, and Z. Zhang, (2019) “A passivity-based control of Euler–Lagrange model for suppressing voltage low-frequency oscillation in highspeed railway" IEEE Transactions on Industrial Informatics 15(10): 5551–5560. DOI: 10.1109/TII.2019.2903103.
  40. [40] H. Komurcugil, S. Ozdemir, N. Altin, and I. Sefa. “A modified Lyapunov-function based control strategy for three-phase grid-connected VSI with LCL filter”. In: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE. 2016, 2218–2223. DOI: 10.1109/IECON.2016.7794069.
  41. [41] I. Sefa, S. Ozdemir, H. Komurcugil, and N. Altin, (2017) “Comparative study on Lyapunov-function-based control schemes for single-phase grid-connected voltagesource inverter with LCL filter" IET Renewable Power Generation 11(11): 1473–1482.
  42. [42] H. Komurcugil, N. Altin, S. Ozdemir, and I. Sefa, (2015) “Lyapunov-function and proportional-resonantbased control strategy for single-phase grid-connected VSI with LCL filter" IEEE Transactions on Industrial Electronics 63(5): 2838–2849. DOI: 10.1109/TIE.2015.2510984.
  43. [43] C. Zhang, G. Wei, C. Zhu, R. Lu, and K. Song. “Research on a compensate topology of primary side based on parallel T-Type structure for wireless power transfer”. In: 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). IEEE. 2017, 1–6. DOI: 10.1109/ITEC-AP.2017.8080822.
  44. [44] W. Li, H. Zhao, J. Deng, S. Li, and C. C. Mi, (2015) “Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers" IEEE Transactions on Vehicular Technology 65(6): 4429–4439. DOI: 10.1109/TVT.2015.2479938.
  45. [45] P. Tan, H. He, and X. Gao. “Phase compensation, ZVS operation of wireless power transfer system based on SOGI-PLL”. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE. 2016, 3185–3188. DOI: 10.1109/APEC.2016.7468320.
  46. [46] Y. Yang, S.Wang, L. Yan, Y. Chen, and J. Zhang, (2021) “LCC" Hsi-An Chiao Tung Ta Hsueh/Journal of Xi’an Jiaotong University 55(5): 171–180. DOI: 10.7652/xjtuxb202105019.
  47. [47] S. Kalkoul, H. Benalla, K. Nabti, and A. Reama. “Comparison among single-phase PLLs based on SOGI”. In: 2020 6th International Conference on Electric Power and Energy Conversion Systems (EPECS). IEEE. 2020, 118–122. DOI: 10.1109/EPECS48981.2020.9304951.
  48. [48] L. Wei, M. Huang, J. Sun, and X. Zha, (2017) “A Nonlinear Large Signal Model of Buck Converter" Journal of Power Supply:
  49. [49] J. Wang, X. Mu, and Q.-K. Li, (2017) “Study of passivity-based decoupling control of T-NPC PV gridconnected inverter" IEEE Transactions on Industrial Electronics 64(9): 7542–7551.


42nd percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.