Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Dai Yu This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Ship and Marine Engineering, JiangSu Shipping College, Nantong 226010, China


 

Received: September 13, 2021
Accepted: December 8, 2021
Publication Date: February 10, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202212_25(6).0009  


ABSTRACT


Pile settlement (SP) socketed to rock has received substantial attention. Despite introducing some design methods of SP prediction, considering the novel and practical predicting model with satisfactory performance is pivotal. The primary target of the present paper is to find out the applicability of applying two hybrid adaptive neuro-fuzzy inference system (ANFIS) models in predicting the pile settlement (SP) socketed to rock in the Klang Valley Mass Rapid Transit (KVMRT) project constructed in Kuala Lumpur, Malaysia. Two constructive variables of the ANFIS method are tuned using two optimization algorithm named antlion optimization (ALO) and grasshopper optimization algorithm (GOA). Five parameters, including the ratio of length in soil layer to length in the rock layer, total length to diameter, uniaxial compressive strength, standard penetration test, and ultimate bearing capacity, were considered as input variables. The results specify remarkable potential in both the training and testing phases for both hybrid ANFIS models. Comparing the measured settlement with those predicted by ALO-ANFIS and GOA-ANFIS methods demonstrated that the developed models have R2 larger than 0.9077 for training data and bigger than 0.9387 in the testing phase. ALO-ANFIS has better performance than GOA-ANFIS in all four statistical performance evaluators. Both of the hybrid ANFIS models have a high capability for predicting SP. However, ALO-ANFIS represents the more prominent ability to determine the optimal value of the ANFIS parameters than other ones.


Keywords: Pile socketed into rock; Pile Settlement; Prediction; Adaptive Neuro-Fuzzy Inference System; Ant lion optimization; Grasshopper optimization algorithm


  1. [1] M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2018) “Experimental study of the mechanical behavior of frozen soils - A case study of Tabriz Subway" Periodica Polytechnica Civil Engineering 62(1): 117–125. DOI: 10.3311/PPci.10960.
  2. [2] M. Esmaeili-Falak, H. Katebi, A. Javadi, and S. Rahimi, (2017) “Experimental investigation of stress and strain characteristics of frozen sandy soils-A case study of Tabriz subway" Modares Civil Engineering journal 17(5): 13–23.
  3. [3] N. Esmaeili-choobar, M. Esmaeili-falak, M. Roohi-hir, and S. Keshtzad, (2013) “Evaluation of collapsibility potential at Talesh, Iran" EJGE: 2561–2573.
  4. [4] M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2020) “Effect of freezing on stress-strain characteristics of granular and cohesive soils" Journal of Cold Regions Engineering 34(2): DOI: 10.1061/(ASCE)CR.1943-5495.0000205.
  5. [5] P. Carrubba, (1997) “Skin friction of large-diameter piles socketed into rock" Canadian Geotechnical Journal 34(2): 230–240. DOI: 10.1139/t96-104.
  6. [6] C. Ng, T. Yau, J. Li, and W. Tang, (2001) “Side resistance of large diameter bored piles socketed into decomposed rocks" Journal of Geotechnical and Geoenvironmental Engineering 127(8): 642–657. DOI: 10.1061/(ASCE)1090-0241(2001)127:8(642).
  7. [7] A. Poorjafar, M. Esmaeili-Falak, and H. Katebi, (2021) “Pile-soil interaction determined by laterally loaded fixed head pile group" Geomechanics and Engineering 26(1): 13–25. DOI: 10.12989/gae.2021.26.1.013.
  8. [8] R. Sarkhani Benemara, (2017) “Experimental and analytical study of pile-stabilized layered slopes" Tabriz: University of Tabriz:
  9. [9] M. Esmaeili-Falak. “Effect of system’s geometry on the stability of frozen wall in excavation of saturated granular soils". (phdthesis). Doctoral dissertation, University of Tabriz, 2017.
  10. [10] R. Sarkhani Benemaran, M. Esmaeili-Falak, and H. Katebi, (2021) “Physical and numerical modelling of pilestabilised saturated layered slopes" Proceedings of the Institution of Civil Engineers: Geotechnical Engineering: DOI: 10.1680/jgeen.20.00152.
  11. [11] M. F. Randolph and C. Wroth, (1978) “ANALYSIS OF DEFORMATION OF VERTICALLY LOADED PILES" ASCE J Geotech Eng Div 104(12): 1465–1488.
  12. [12] P. Le Tirant. Design guides for offshore structures: Offshore pile design. 1992.
  13. [13] R. Rowe and H. Armitage, (1987) “DESIGN METHOD FOR DRILLED PIERS IN SOFT ROCK." Canadian geotechnical journal 24(1): 126–142. DOI: 10.1139/t87-011.
  14. [14] F. Pooya Nejad, M. Jaksa, M. Kakhi, and B. McCabe, (2009) “Prediction of pile settlement using artificial neural networks based on standard penetration test data" Computers and Geotechnics 36(7): 1125–1133. DOI: 10.1016/j.compgeo.2009.04.003.
  15. [15] A. Soleimanbeigi and N. Hataf, (2006) “Prediction of settlement of shallow foundations on reinforced soils using neural networks" Geosynthetics International 13(4): 161–170. DOI: 10.1680/gein.2006.13.4.161.
  16. [16] M. Shahin, H. Maier, and M. Jaksa, (2002) “Predicting settlement of shallow foundations using neural networks" Journal of Geotechnical and Geoenvironmental Engineering 128(9): 785–793. DOI: 10.1061/(ASCE)1090-0241(2002)128:9(785).
  17. [17] M. Esmaeili-Falak, H. Katebi, M. Vadiati, and J. Adamowski, (2019) “Predicting Triaxial Compressive Strength and Young’s Modulus of Frozen Sand Using Artificial Intelligence Methods" Journal of Cold Regions Engineering 33(3): DOI: 10.1061/(ASCE)CR.1943-5495.0000188.
  18. [18] A. Nassr, M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2018) “A new approach to modeling the behavior of frozen soils" Engineering Geology 246: 82–90. DOI: 10.1016/j.enggeo.2018.09.018.
  19. [19] H. Rezaei, R. Nazir, and E. Momeni, (2016) “Bearing capacity of thin-walled shallow foundations: An experimental and artificial intelligence-based study" Journal of Zhejiang University: Science A 17(4): 273–285. DOI: 10.1631/jzus.A1500033.
  20. [20] S. Yagiz, E. Sezer, and C. Gokceoglu, (2012) “Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks" International Journal for Numerical and Analytical Methods in Geomechanics 36(14): 1636–1650. DOI: 10.1002/nag.1066.
  21. [21] E. Momeni, R. Nazir, D. Armaghani, and H. Maizir, (2015) “Application of artificial neural network for predicting shaft and tip resistances of concrete piles" Earth Sciences Research Journal 19(1): 85–93. DOI: 10.15446/esrj.v19n1.38712.
  22. [22] M. Khandelwal and T. Singh, (2007) “Evaluation of blast-induced ground vibration predictors" Soil Dynamics and Earthquake Engineering 27(2): 116–125. DOI: 10.1016/j.soildyn.2006.06.004.
  23. [23] D. Jahed Armaghani, M. Mohd Amin, S. Yagiz, R. Faradonbeh, and R. Abdullah, (2016) “Prediction of the uniaxial compressive strength of sandstone using various modeling techniques" International Journal of Rock Mechanics and Mining Sciences 85: 174–186. DOI: 10.1016/j.ijrmms.2016.03.018.
  24. [24] M. Pal and S. Deswal, (2010) “Modelling pile capacity using Gaussian process regression" Computers and Geotechnics 37(7-8): 942–947. DOI: 10.1016/j.compgeo.2010.07.012.
  25. [25] P. Samui, (2019) “Determination of Friction Capacity of Driven Pile in Clay Using Gaussian Process Regression (GPR), and Minimax Probability Machine Regression (MPMR)" Geotechnical and Geological Engineering 37(5): 4643–4647. DOI: 10.1007/s10706-019-00928-8.
  26. [26] E. Momeni, M. Dowlatshahi, F. Omidinasab, H. Maizir, and D. Armaghani, (2020) “Gaussian Process Regression Technique to Estimate the Pile Bearing Capacity" Arabian Journal for Science and Engineering 45(10): 8255–8267. DOI: 10.1007/s13369-020-04683-4.
  27. [27] W. Zhang and A. Goh, (2013) “Multivariate adaptive regression splines for analysis of geotechnical engineering systems" Computers and Geotechnics 48: 82–95. DOI: 10.1016/j.compgeo.2012.09.016.
  28. [28] R. Benemaran and M. Esmaeili-Falak, (2020) “Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO" Computers and Concrete 26(4): 309–316. DOI: 10.12989/cac.2020.26.4.309.
  29. [29] L. Teodorescu and D. Sherwood, (2008) “High Energy Physics event selection with Gene Expression Programming" Computer Physics Communications 178(6): 409–419. DOI: 10.1016/j.cpc.2007.10.003.
  30. [30] T.-T. Le and M. Le, (2021) “Development of user-friendly kernel-based Gaussian process regression model for prediction of load-bearing capacity of square concretefilled steel tubular members" Materials and Structures/ Materiaux et Constructions 54(2): DOI: 10.1617/s11527-021-01646-5.
  31. [31] I. Alkroosh and H. Nikraz, (2011) “Correlation of Pile Axial Capacity and CPT Data Using Gene Expression Programming" Geotechnical and Geological Engineering 29(5): 725–748. DOI: 10.1007/s10706- 011-9413-1.
  32. [32] A. Mollahasani, A. Alavi, and A. Gandomi, (2011) “Empirical modeling of plate load test moduli of soil via gene expression programming" Computers and Geotechnics 38(2): 281–286. DOI: 10.1016/j.compgeo.2010.11.008.
  33. [33] A. Ozbek, M. Unsal, and A. Dikec, (2013) “Estimating uniaxial compressive strength of rocks using genetic expression programming" Journal of Rock Mechanics and Geotechnical Engineering 5(4): 325–329. DOI: 10.1016/j.jrmge.2013.05.006.
  34. [34] S. Dindarloo, (2015) “Prediction of blast-induced ground vibrations via genetic programming" International Journal of Mining Science and Technology 25(6): 1011–1015. DOI: 10.1016/j.ijmst.2015.09.020.
  35. [35] S. Alemdag, Z. Gurocak, A. Cevik, A. Cabalar, and C. Gokceoglu, (2016) “Modeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programming" Engineering Geology 203: 70–82. DOI: 10.1016/j.enggeo.2015.12.002.
  36. [36] D. Armaghani, R. Faradonbeh, H. Rezaei, A. Rashid, and H. Amnieh, (2018) “Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming" Neural Computing and Applications 29(11): 1115–1125. DOI: 10.1007/s00521-016-2618-8.
  37. [37] D. Armaghani, P. Asteris, S. Fatemi, M. Hasanipanah, R. Tarinejad, A. Rashid, and V. Huynh, (2020) “On the use of neuro-swarm system to forecast the pile settlement" Applied Sciences (Switzerland) 10(6): DOI: 10.3390/app10061904.
  38. [38] M. Shariati, M. Mafipour, J. Haido, S. Yousif, A. Toghroli, N. Trung, and A. Shariati, (2020) “Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)" Steel and Composite Structures 34(1): 155–170. DOI: 10.12989/scs.2020.34.1.155.
  39. [39] L. Tightiz, M. Nasab, H. Yang, and A. Addeh, (2020) “An intelligent system based on optimized ANFIS and association rules for power transformer fault diagnosis" ISA Transactions 103: 63–74. DOI: 10.1016/j.isatra.2020.03.022.
  40. [40] Y. Cao, M. Babanezhad, M. Rezakazemi, and S. Shirazian, (2020) “Prediction of fluid pattern in a shear flow on intelligent neural nodes using ANFIS and LBM" Neural Computing and Applications 32(17): 13313–13321. DOI: 10.1007/s00521-019-04677-w.
  41. [41] D. Armaghani and P. Asteris, (2021) “A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength" Neural Computing and Applications 33(9): 4501–4532. DOI: 10.1007/s00521-020-05244-4.
  42. [42] A. Hussein, (2016) “Adaptive Neuro-Fuzzy Inference System of friction factor and heat transfer nanofluid turbulent flow in a heated tube" Case Studies in Thermal Engineering 8: 94–104. DOI: 10.1016/j.csite.2016.06.001.
  43. [43] M. Esmaeili Falak, R. Sarkhani Benemaran, and R. Seifi, (2020) “Improvement of the mechanical and durability parameters of construction concrete of the Qotursuyi Spa" Concrete Research 13(2): 119–134. DOI: 10.22124/JCR.2020.14518.1395.
  44. [44] S. Bayat, H. Pishkenari, and H. Salarieh, (2019) “Observer design for a nano-positioning system using neural, fuzzy and ANFIS networks" Mechatronics 59: 10–24. DOI: 10.1016/j.mechatronics.2019.02.007.
  45. [45] A. Fathy and A. Kassem, (2019) “Antlion optimizer- ANFIS load frequency control for multi-interconnected plants comprising photovoltaic and wind turbine" ISA Transactions 87: 282–296. DOI: 10.1016/j.isatra.2018.11.035.
  46. [46] H. Fattahi and M. Hasanipanah, (2021) “An integrated approach of ANFIS-grasshopper optimization algorithm to approximate flyrock distance in mine blasting" Engineering with Computers: DOI: 10.1007/s00366-020-01231-4.
  47. [47] A. Seifi, M. Ehteram, V. Singh, and A. Mosavi, (2020) “Modeling and uncertainty analysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN" Sustainability (Switzerland) 12(10): DOI: 10.3390/SU12104023.
  48. [48] I. Alarifi, H. Nguyen, A. Bakhtiyari, and A. Asadi, (2019) “Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/Oil hybrid nanofluid" Materials 12(21): DOI: 10.3390/ma12213628.
  49. [49] M. Hossain, S. Mekhilef, F. Afifi, L. Halabi, L. Olatomiwa, M. Seyedmahmoudian, B. Horan, and A. Stojcevski, (2018) “Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability" PLoS ONE 13(4): DOI: 10.1371/journal.pone.0193772.
  50. [50] A.W. Hatheway. The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974–2006. 2009.
  51. [51] S. Mirjalili, (2015) “The ant lion optimizer" Advances in Engineering Software 83: 80–98. DOI: 10.1016/j.advengsoft.2015.01.010.
  52. [52] S. Simpson, A. McCaffery, and B. HÄgele, (1999) “A behavioural analysis of phase change in the desert locust" Biological Reviews 74(4): 461–480. DOI: 10.1111/j.1469-185X.1999.tb00038.x.
  53. [53] S. Saremi, S. Mirjalili, and A. Lewis, (2017) “Grasshopper Optimisation Algorithm: Theory and application" Advances in Engineering Software 105: 30–47. DOI: 10.1016/j.advengsoft.2017.01.004.
  54. [54] M. Mafarja, I. Aljarah, H. Faris, A. Hammouri, A. Al-Zoubi, and S. Mirjalili, (2019) “Binary grasshopper optimisation algorithm approaches for feature selection problems" Expert Systems with Applications 117: 267–286. DOI: 10.1016/j.eswa.2018.09.015.
  55. [55] M. Mafarja, I. Aljarah, A. Heidari, A. Hammouri, H. Faris, A. Al-Zoubi, and S. Mirjalili, (2018) “Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems" Knowledge-Based Systems 145: 25–45. DOI: 10.1016/j.knosys.2017.12.037.
  56. [56] Y. Gad, H. Diab, M. Abdelsalam, and Y. Galal, (2020) “Smart energy management system of environmentally friendly microgrid based on grasshopper optimization technique" Energies 13(18): DOI: 10.3390/en13195000.
  57. [57] J.-S. Jang, (1993) “ANFIS: Adaptive-Network-Based Fuzzy Inference System" IEEE Transactions on Systems, Man and Cybernetics 23(3): 665–685. DOI: 10.1109/21.256541.
  58. [58] R. Sahu, C. Patra, N. Sivakugan, and B. Das, (2017) “Use of ANN and Neuro Fuzzy Model to Predict Bearing Capacity Factor of Strip Footing Resting on Reinforced Sand and Subjected to Inclined Loading" International Journal of Geosynthetics and Ground Engineering 3(3): DOI: 10.1007/s40891-017-0102-x.
  59. [59] B. Sethy, C. Patra, N. Sivakugan, and B. Das, (2017) “Application of ANN and ANFIS for Predicting the Ultimate Bearing Capacity of Eccentrically Loaded Rectangular Foundations" International Journal of Geosynthetics and Ground Engineering 3(4): DOI: 10.1007/s40891-017-0112-8.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.