Truong Son Bui1, Duc Tho Pham This email address is being protected from spambots. You need JavaScript enabled to view it.1, Minh Ngoc Vu2, Van Duc Bui1, Nam Hung Tran3, and Thi Nu Nguyen1

1Hanoi University of Mining and Geology, Hanoi, Viet Nam
2Duy Tan University, Da Nang, Viet Nam
3Le Quy Don Technical University, Hanoi, Viet Nam


 

Received: December 22, 2020
Accepted: May 3, 2021
Publication Date: July 9, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202202_25(1).0006  


ABSTRACT


Chloride ions penetrated into reinforced concrete member causes rebar corrosion and induces the volume expansion of the rebar and cracks of concrete cover. This study aims to predict the chloride ingress in the reinforced concrete member and its operational service life by using a lattice model. Concrete is considered at the mesoscale, which constitutes three phases: aggregates, cement matrix and interfacial transition zones (ITZ). Fick’s second law was implemented into the lattice model to describe the diffusion of the chloride ions within concrete. The diffusivity coefficient of aggregates is almost null, whereas those of cement paste and of ITZ are deduced from macroscopic diffusivity measure. Numerical solutions is validated against the test data and the analytical solution. The effect of the aggregate volume fraction is discussed. Curves, which help to determine the service life of the reinforced concrete structure from the cover thickness, is resulted from the lattice modelling for concrete with different aggregate volume fractions.


Keywords: Chloride diffusion, Concrete, Mesoscale, Lattice model, service life, cover thickness


REFERENCES


  1. [1] NTBUILD-443, (1995) “Concrete Hardened: Accelerated Chloride Penetration":
  2. [2] AASHTO. Standard method of test for resistance of concrete to chloride ion penetration. 2002.
  3. [3] G. K. Glass and N. R. Buenfeld, (1998) “Theoretical assessment of the steady state diffusion cell test" Journal of materials science 33(21): 5111–5118. DOI: 10.1023/ A:1004407214997.
  4. [4] C.-C. Yang and L. C. Wang, (2004) “The diffusion characteristic of concrete with mineral admixtures between salt ponding test and accelerated chloride migration test" Materials Chemistry and Physics 85(2-3): 266–272. DOI: 10.1016/j.matchemphys.2003.12.025.
  5. [5] M. Nokken, A. Boddy, R. Hooton, and M. Thomas, (2006) “Time dependent diffusion in concrete—three laboratory studies" Cement and Concrete Research 36(1):200–207. DOI: 10.1016/j.cemconres.2004.03.030.
  6. [6] D. P. Bentz, E. J. Garboczi, and E. S. Lagergren, (1998) “Multi-scale microstructural modeling of concrete diffusivity: Identification of significant varibles" Cement, Concrete and Aggregates 20(1): 129–139. DOI: 10.1520/cca10446j.
  7. [7] C.-C. Yang and S.-H. Weng, (2013) “A three-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials" Magazine of concrete research 65(3): 193–201. DOI: 10.1680/macr.12.00052.
  8. [8] S.-T. Nguyen, D.-C. Pham, M.-N. Vu, and Q.-D. To, (2016) “On the effective transport properties of heterogeneous materials" International Journal of Engineering Science 104: 75–86. DOI: 10.1016/J.IJENGSCI.2016.04.001.
  9. [9] A. Pouya, (2015) “A finite element method for modeling coupled flow and deformation in porous fractured media" International Journal for Numerical and Analytical Methods in Geomechanics 39(16): 1836–1852.DOI: 10.1002/nag.2384.
  10. [10] M. N. Vu, S. T. Nguyen, and M. H. Vu, (2015) “Modeling of fluid flow through fractured porous media by a single boundary integral equation" Engineering Analysis with Boundary Elements 59: 166–171. DOI: 10.1016/j.enganabound.2015.06.003.
  11. [11] M. N. Vu. Modélisation des écoulements dans des milieux poreux fracturés par la méthode des équations aux intégrales singulières. 2012.
  12. [12] M. Bitaraf and S. Mohammadi, (2008) “Analysis of chloride diffusion in concrete structures for prediction of initiation time of corrosion using a new meshless approach" Construction and Building Materials 22(4): 546–556. DOI: 10.1016/j.conbuildmat.2006.11.005.
  13. [13] A. Daoud, O. Maurel, and C. Laborderie, (2013) “2D mesoscopic modelling of bar–concrete bond" Engineering Structures 49: 696–706. DOI: 10.1016/j.engstruct. 2012.11.018.
  14. [14] A. Michou, A. Hilaire, F. Benboudjema, G. Nahas, P.Wyniecki, and Y. Berthaud, (2015) “Reinforcement– concrete bond behavior: Experimentation in drying conditions and meso-scale modeling" Engineering Structures 101: 570–582. DOI: 10.1016/j.engstruct. 2015.07.028.
  15. [15] A. Caggiano and G. Etse, (2015) “Coupled thermo–mechanical interface model for concrete failure analysis under high temperature" Computer Methods in Applied Mechanics and Engineering 289: 498–516. DOI: 10.1016/j.cma.2015.02.016.
  16. [16] A. Pouya, M.-N. Vu, S. Ghabezloo, and Z. Bendjeddou, (2013) “Effective permeability of cracked unsaturated porous materials" International Journal of Solids and Structures 50(20-21): 3297–3307. DOI: 10.1016/j.ijsolstr.2013.05.027.
  17. [17] J. E. Bolander and N. Sukumar, (2005) “Irregular lattice model for quasistatic crack propagation" Physical Review B 71(9): 94106. DOI: 10.1103/PhysRevB.71.094106.
  18. [18] T.-D. Nguyen, D.-T. Pham, and M.-N. Vu, (2019) “Thermo-mechanically-induced thermal conductivity change and its effect on the behaviour of concrete" Construction and Building Materials 198: 98–105.DOI: 10.1016/j.conbuildmat.2018.11.146.
  19. [19] D. T. Pham, T. D. Nguyen, M. N. Vu, and A. Chinkulkijniwat, (2019) “Mesoscale approach to numerical modelling of thermo-mechanical behaviour of concrete at high temperature" European Journal of Environmental and Civil Engineering: 1–20. DOI: 10.1080/19648189.2019.1577762.
  20. [20] D. T. Pham, L. Sorelli, M. Fafard, and M.-N. Vu, (2021) “Hydromechanical couplings of reinforced tensioned members of steel fiber reinforced concrete by dual lattice model" International Journal for Numerical and Analytical Methods in Geomechanics 45(2): 191–207. DOI:10.1002/nag.3148.
  21. [21] P. Grassl, H. S. Wong, and N. R. Buenfeld, (2010) “Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar" Cement and concrete research 40(1): 85–93. DOI: 10.1016/j. cemconres.2009.09.012.
  22. [22] T. Tran, D. Pham, M. Vu, V. Truong, X. Ho, N. Tran, T. Nguyen-Sy, and Q. To, (2021) “Relation between water permeability and chloride diffusivity of concrete under compressive stress: Experimental investigation and mesoscale lattice modelling" Construction and Building Materials 267: 121164. DOI: 10 . 1016 / j .conbuildmat.2020.121164.
  23. [23] T. S. Bui, D. T. Pham, M. N. Vu, T. N. Nguyen, T. Nguyen-Sy, V. P. Nguyen, and T. Nguyen-Thoi, (2021) “Modeling of the tension stiffening behavior and the water permeability change of steel bar reinforcing concrete using mesoscopic and macroscopic hydro-mechanical lattice model" Construction and Building Materials 291: 123266. DOI: 10.1016/J.CONBUILDMAT.2021. 123266.
  24. [24] P. Grassl and Z. P. Bažant, (2009) “Random latticeparticle simulation of statistical size effect in quasi-brittle structures failing at crack initiation" Journal of engineering mechanics 135(2): 85–92.
  25. [25] A. B. Okabe and B. Boots. B. Sugihara K. and Chiu SN [2000]: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. DOI: 10.1002/9780470317013.
  26. [26] J. E. Bolander Jr and S. Berton, (2004) “Simulation of shrinkage induced cracking in cement composite overlays" Cement and Concrete Composites 26(7): 861–871. DOI: 10.1016/j.cemconcomp.2003.04.001.
  27. [27] L. Shen, Q. Ren, N. Xia, L. Sun, and X. Xia, (2015) “Mesoscopic numerical simulation of effective thermal conductivity of tensile cracked concrete" Construction and Building Materials 95: 467–475. DOI: 10 . 1016 / j .conbuildmat.2015.07.117.
  28. [28] J. Skrzypek and A. Ganczarski. Modeling of material damage and failure of structures: theory and applications. Springer Science Business Media, 1999. DOI: 10.1007/978-3-540-69637-7.
  29. [29] N. S. Berke and M. C. Hicks. “Estimating the life cycle of reinforced concrete decks and marine piles using laboratory diffusion and corrosion data”. In: Corrosion forms and control for infrastructure. ASTM International, 1992. DOI: 10.1520/STP19764S.
  30. [30] T. T. H. Le. Étude multi-échelle du comportement thermohydro- mécanique des matériaux cimentaires: approche morphologique pour la prise en compte de la mésostructure.2011.
  31. [31] T. Mori and K. Tanaka, (1973) “Average stress in matrix and average elastic energy of materials with misfitting inclusions" Acta metallurgica 21(5): 571–574. DOI: 10.1016/0001-6160(73)90064-3.
  32. [32] Z. Hashin and S. Shtrikman, (1962) “A variational approach to the theory of the elastic behaviour of polycrystals" Journal of the Mechanics and Physics of Solids 10(4): 343–352. DOI: 10.1016/0022- 5096(62)90005-4.
  33. [33] DuraCrete, (2000) “Final technical report-general guidelines for durability design and redesign":
  34. [34] Life-365, (2013) “Service Life Prediction model and computer Program for Predicting the Service Life and Life- Cycle Cost of Reinforced Concrete Exposed to Chlorides. Version 2.2":


    
 

0.7
2020CiteScore
 
 
33rd percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.