REFERENCES
- [1] Shen, Z., Subbiah, S., Gu, X., et al., “Cloudscale: Elastic Resource Scaling for Multi-tenant Cloud Systems,” Proc. of the 2nd ACM Symposium on Cloud Computing, Cascais, Portugal, pp. 5:15:14 (2011).
- [2] Information on http://www.rsclouds.com/index.php/ rscloud/
- [3] Ritov, Y., Bickel, P. J., Gamst, A. C., et al., “The Bayesian Analysis of Complex, High-Dimensional Models: Can It Be CODA?” Statistical Science, Vol. 29, No. 4, pp. 619639 (2014). doi: 10.1214/14-STS483
- [4] Di, S., Kondo, D. and Cirne, W., “Google Host Load Prediction Based on Bayesian Model with Optimized Feature Combination,” Journal of Parallel and Distributed Computing, Vol. 74, No. 1, pp. 18201832 (2014). doi: 10.1016/j.jpdc.2013.10.001
- [5] Jules, O., Hafid, A. and Serhani, M. A., “Bayesian Network and Probabilistic Ontology Driven Trust Model for SLA Management of Cloud Services,” Proc. of 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), Luxembourg, pp. 7783 (2014). doi: 10.1109/CloudNet.2014.6968972
- [6] Wu, X., Zhu, X., Wu, G. Q., et al., “Data Mining with Big Data,” IEEE Transactions on Knowledge and Data Engineering, Vol. 26, No. 1, pp. 97107 (2014).
- [7] Sharma, B., Chudnovsky, V., Hellerstein, J. L., Rifaat, R. and Das, C. R., “Modeling and Synthesizing Task Placement Constraints in Google Compute Clusters,” Proc. of the 2nd ACM Symposium on Cloud Computing, Cascais, Portugal, pp. 3:13:14 (2011).
- [8] Reiss, C., Tumanov, A., Ganger, G. R., et al., “Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis,” Proc. of the Third ACM Symposium on Cloud Computing. San Jose, CA, USA, pp. 7:1 7:14 (2012).
- [9] Khan, A., Yan, X., Tao, S., et al., “Workload Characterization and Prediction in the Cloud: A Multiple Time Series Approach,” Proc. of 2012 IEEE Network Operations and Management Symposium (NOMS), Maui, Havaii, USA, pp. 12871294 (2012). doi: 10. 1109/NOMS.2012.6212065
- [10] Barnes, B. J., Rountree, B., Lowenthal, D. K., et al., “A Regression-based Approach to Scalability Prediction,” Proc. of the 22nd Annual International Conference on Supercomputing, Island of Kos, Greece, pp. 368377 (2008). doi: 10.1145/1375527.1375580
- [11] Roy, N., Dubey, A. and Gokhale, A., “Efficient Autoscaling in the Cloud Using Predictive Models for Workload Forecasting,” Proc. of the 2011 IEEE 4th International Conference on Cloud Computing, Washington, DC, USA, pp. 500–507 (2011). doi: 10.1109/CL OUD.2011.42
- [12] Saripalli, P., Kiran, G. V. R., Shankar, R. R., et al., “Load Prediction and Hot Spot Detection Models for Autonomic Cloud Computing,” Proc. of 2011 Fourth IEEE International Conference on Utility and Cloud Computing, Melbourne, Australia, pp. 397402 (2011). doi: 10.1109/UCC.2011.66
- [13] Gong, Z., Gu, X. and Wilkes, J., “PRESS: PRedictive Elastic ReSource Scaling for Cloud Systems,” Proc. of the 2010 International Conference on Network and Service Management, Niagara Falls, Canada, pp. 916 (2010). doi: 10.1109/CNSM.2010.5691343
- [14] Carrington, L., Snavely, A. and Wolter, N., “A Performance Prediction Framework for Scientific Applications,” Future Generation Computer Systems, Vol. 22, No. 3, pp. 336346 (2006). doi: 10.1016/j.future.2004. 11.019
- [15] Khazaei, H., Miši, J. and Miši, V. B., “Performance Analysis of Cloud Computing Centers Using m/g/m/ m+ r Queuing Systems,” IEEE Transactions on Parallel and Distributed Systems, Vol. 23, No. 5, pp. 936 943 (2012). doi: 10.1109/TPDS.2011.199
- [16] Yang, Q., Peng, C., Zhao, H., et al., “A New Method Based on PSR and EA-GMDH for Host Load Prediction in Cloud Computing System,” The Journal of Supercomputing, Vol. 68, No. 3, pp. 14021417 (2014). doi: 10.1007/s11227-014-1097-x
- [17] Gu, Z., Chang, C., He, L., et al., “Developing a Pattern Discovery Model for Host Load Data,” Proc. of 2014 IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China, pp. 265 271 (2014). doi: 10.1109/CSE.2014.78
- [18] Gmach, D., Rolia, J., Cherkasova, L. and Kemper, A., “Capacity Management and Demand Prediction for Next Generation Data Centers,” Proc. of International Conference on Web Services, Salt Lake City, Utah, USA, pp. 18 (2007). doi: 10.1109/ICWS.2007.62
- [19] Govindan, S., Choi, J., Urgaonkar, B., et al., “Statistical Profiling-based Techniques for Effective Power Provisioning in Data Centers,” Proc. of the 4th ACM European Conference on Computer Systems, Nuremberg, Germany, pp. 317330 (2011). doi: 10.1145/15 19065.1519099
- [20] Wood, T., Cherkasova, L., Ozonat, K., et al., “Profiling and Modeling Resource Usage of Virtualized Applications,” Proc. of the 9th ACM/IFIP/USENIX International Conference on Middleware, Leuven, Belgium, pp. 366387 (2008). doi: 10.1007/978-3-540-89856- 6_19