REFERENCES
- [1] Berger, M., “La geometrie metrique des varietes Riemnniennes,” Elie Cartan et les Mathematiques d’Aujourd’Hui, Asterisque, pp. 9-66 (1985).
- [2] Blair, D. E., Dillen, F., Verstraelen, L. and Vrancken, L., “Calabi curves as holomorphic Legendre curves and Chen’s inequality," Kyunpook Math. J. Vol. 35, Jun, pp.407-416 (1995).
- [3] Chen, B. Y., “On the total curvature of immersed manifolds I,” Amer. J. Math. Vol. 93, pp. 148-162 (1971).
- [4] Chen, B. Y., Total Mean Curvature and Submanifolds of Finite Type, World Scientific Publ., Co. River Edge, NJ (1984).
- [5] Chen, B. Y.,“Mean curvature and shape operator of isometric immersions in realspace-forms,” Glasgow Math. J. Vol. 38, pp. 87-97 (1996).
- [6] Chen, B. Y., “Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension,” Glasgow Math. J. Vol. 41, pp. 33-41 (1999).
- [7] Chen, B. Y., “Strings of Riemannian invariants, inequalities, ideal immersions and their applications,” Third Pacific Rim Geom. Conf., Intern. Press, Cambridge, MA, pp. 105-127 (1998).
- [8] Chen, B. Y., “Some new obstructions to minimal and Lagrangian isometric immersions,” Japan. J. Math. Vol. 26, pp. 105-127 (2000).
- [9] Chen, B. Y., “Ideal Lagrangian immersions in complex space forms,” Math. Proc. Cambridge Phil. Soc. Vol. 128, pp. 511-533 (2000).
- [10] Chen, B. Y., “Riemannian submani-folds, ” Handbook of Differential Geometry, Vol. I, (North Holland Publ.) pp. 187-418 (2000). [11] Chen, B. Y., Dillen, F. and Verstraelen, L., “Conformally flat ideal hypersurfaces,” (preprint).
- [12] Chen, B. Y., Dillen, F. Verstraelen, L. and Vrancken, L.,“Characterizations of Riemannian space forms, Einstein spaces and conformally flat spaces,” Proc. Amer. Math. Soc. Vol. 128, pp. 589-598 (2000).
- [13] Chen, B. Y.and Vrancken, L., “CRsubmanifolds of complex hyperbolic spaces satisfying a basic equality,” Israel J. Math. Vol. 110, pp. 341-358 (1999).
- [14] Chen, B. Y. and Yang, J., “Elliptic functions, theta function and hypersurfaces satisfying a basic equality,” Math. Proc. Cambridge Phil. Soc. Vol. 125, pp. 463-509 (1999).
- [15] Chern, S. S., Minimal Submanifolds in a Riemannian Manifold, Univ. of Kansas, Lawrence, Kansas (1968).
- [16] Dajczer, M. and Florit, L. A., “On Chen’s basic equality,” Illinois J. Math. Vol. 42, pp. 97-106 (1998).
- [17] Defever, F., Mihai, I. and Verstraelen, L., “B. Y. Chen’s inequality for C-totally real submanifolds in Sasakian space forms,” Boll. Un. Mat. Ital. Ser. B Vol. 11, pp.365-374 (1997).
- [18] Dillen, F., Petrovic, M., and Verstraelen, L., “Einstein, conformally flat and semisymmetric submanifolds satisfying Chen’s equality,” Israel J. Math. Vol. 100, pp. 163- 169 (1997).
- [19] Dillen, F. and Vrancken, L., “Totally real submanifolds in 6-sphere satisfying Chen’s equality,” Trans. Amer. Math. Soc. Vol. 348, pp. 1633-1646 (1996).
- [20] Gromov, M., “A topological technique for the construction of solutions of differential equations and inequalities,” Intern. Congr. Math. Nice 1970, Vol 2, pp. 221-225, (1971).
- [21] Nagano, T., “On the minimum eigenvalues of the Laplacians in Riemannian manifolds,” Sci. Papers College Gen. Edu. Univ. Tokyo, Vol 11, pp. 177-182, (1961).
- [22] Osserman, R., “Curvature in the eighties,” Amer. Math. Monthly, Vol 97, pp. 731-754 (1990).
- [23] Sasahara, T., “CR-submanifolds in complex hyperbolic spaces satisfying an equality of Chen,” Tsukuba J. Math. Vol. 23, pp. 565- 583(1999).