Jaw-Kuen Shiau1,2 and Joe H. Chow1,2

1Aerospace Engineering Dept., Tamkang University, Taiwan, R.O.C.
2ECSE Dept., Rensselaer Polytechnic Institute, Troy, NY USA


 

Received: December 2, 1998
Accepted: January 8, 1999
Publication Date: January 8, 1999

Download Citation: ||https://doi.org/10.6180/jase.1998.1.2.06  


ABSTRACT


A general approach for solving structurally constrained H ∞ suboptimal control problems is proposed. The structurally constrained problems include static output feedback control, decentralized control, and fixed controllers for different operating conditions. The approach uses a dual design formulation based on an H ∞ state-feedback controller parametrization result. The dual design condition is in the form of a biaffine matrix inequality (BMI). To solve for the control gains from the BMI, an iterative algorithm based on the linear matrix inequality (LMI) technique is developed. In this new approach, the control gains are independent of any Riccati equation solutions.


Keywords: Robust Control, Linear Matrix Inequalities, State Feedback, Static Output Feedback, Simultaneous Stabilization.


REFERENCES


  1. [1] System and Control Theory, SIAM, Philadelphia, 1994.
  2. [2] Chen, H.-B., Chow, J. H., Kale, M., and Minto, K. D., “Simultaneous Stabilization using Stable System Inversion,” Automatica, Vol. 31, pp. 531-542, 1995.
  3. [3] Date, R. Boyd, S., Ghaoui, L. El, Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in A., and Chow, J. H., “A Parametrization Approach to Optimal H2 and H∞ Decentralized Control Problems,” Automatica, Vol. 29, pp. 457-463, 1993.
  4. [4] Davison, E. J. (ed.), “Benchmark Problems for Control System Design”, Report of the IFAC Theory Committee, May, 1990.
  5. [5] Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A., “State-Space Solutions to Standard H2 and H∞ Control Problems,” IEEE Trans. Automat. Contr., Vol. 34, pp. 831-847, 1989.
  6. [6] Gahinet, P., and Nemirovskii, A., LMI Lab: A Package for Manipulating and Solving LMI's, Version 2.0, 1993.
  7. [7] Geromel, J. C., Bernussou, J., and Peres, P. L. D., “Decentralized Control through Parameter Space Optimization” Automatica, Vol. 30, pp. 1565-1578, 1994.
  8. [8] Iwasaki, T., and Skelton, R. E., “All Controllers for the General H∞ Control Problem: LMI ExistenceConditions and State Space Formulas,” Automatica, Vol. 30, pp. 1307-1317, 1994.
  9. [9] Khargonekar, P. P., Petersen, I. P., and Rotea, M. A., “H∞-Optimal Control with State-Feedback,” IEEE Trans. Automat. Contr., Vol. AC-33, pp. 786-788, 1988.
  10. [10] Levine, W. S., and Athans, M., “On the Determination of the Optimal Constant Output Feedback Gains for Linear Multivariable Systems,” IEEE Trans. Automat. Contr., Vol. AC-15, pp. 44-48, 1970.
  11. [11] Packard, A., Zhou, K., Pandey, P., and Becker, G., “A Collection of Robust Control Problems leading to LMI's,” Proceedings of the 30th Conference on Decision and Control, pp. 1245-1250, Brighton, England, December 1991.
  12. [12] Richter, S., and DeCarlo, R., “A Homotopy Method for Eigenvalue Assignment using Decentralized State Feedback,” IEEE Trans. Automat. Contr., Vol. AC-29, pp. 148-158, 1984.
  13. [13] Shiau, J.-K., “Robust Decentralized Control: Model-Matching Formulation and Iterative Convex Programming Solutions,” Ph.D. Thesis, Rensselaer Polytechnic Institute, December 1995.
  14. [14] Taranto, G. N., Shiau, J.-K., Chow, J. H., and Othman, H. A., “A Robust Decentralized Control Design for FACTS Devices,” Proc. of 4th IEEE Conference on Control Application, 1995.
  15. [15] Veillette, R. J., Medanić, J. V., and Perkins, W. R., “Design of Reliable Control Systems,” IEEE Trans. Automat. Contr., Vol. 37, pp. 290-304, 1992.
  16. [16] Wang, S. H., and Davison, E. J., “On Stabilization of Decentralized Control Systems,” IEEE Trans. Automat. Contr., Vol. AC-18, pp. 473-478, 1973.
  17. [17] Zhou, K., “On the Parametrization of H∞ Controllers”, IEEE Trans. Automat. Contr., Vol. 37, pp. 1442-1446, 1992. 


Latest Articles