Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Error with CKF.

P. Sirish Kumar  1 and V.B.S. Srilatha Indira Dutt2

1Department of Electronics Communication Engineering, Aditya Institute of Technology and Management, Tekkali 532201, India.
2Department of Electronics Communication Engineering, GITAM University, Visakhapatnam 530045, India.


 

Received: August 19, 2020
Accepted: September 4, 2020
Publication Date: February 1, 2021

Download Citation: ||https://doi.org/10.6180/jase.202102_24(1).0009  


ABSTRACT


Some study methods, like least-squares, Kalman filter, are worked out so far to minimize this error factor and improve the GPS positioning accuracy. This paper presents a fast, accurate, and a new method in implementing Kalman Filter for GPS positioning, based on the correntropy criterion designated as the Correntropy Kalman Filter (CKF). The suggested model is evaluated using numerous 2-Dimensional and 3-Dimensional accuracy metrics in X, Y, Z directions. The proposed method results show that the positioning accuracy for all three co-ordinates is up to 34 %, significantly greater than the general approach (Traditional Kalman Filter).


Keywords: Accuracy; Correntropy; Correntropy Kalman Filter; Global Positioning System; Kalman Filter


REFERENCES


  1. [1] David Rutledge. Innovation: accuracy versus precision. GPS World, 21(5):42–49, 2010.
  2. [2] G S Rao. Global navigation satellite systems. Tata mcgra edition, 2010.
  3. [3] R E Kalman. A New Approach to Linear Filtering and Prediction Problems 1. Technical report, 1960.
  4. [4] Ramsey Faragher. Understanding the basis of the kalman filter via a simple and intuitive derivation [lecture notes]. IEEE Signal processing magazine, 29(5):128– 132, 2012.
  5. [5] W Liu, PP Pokharel, JC Príncipe IEEE Transactions on Signal, and Undefined 2007. Correntropy: Properties and applications in non-Gaussian signal processing. ieeexplore.ieee.org, 55(11):5286–5298, 2007.
  6. [6] Shokri, Sh, N. Rahemi and M. R. Mosavi. Improving GPS positioning accuracy using weighted Kalman Filter and variance estimation methods. CEAS Aeronautical Journal, pages 1–13, 2019.
  7. [7] Badong Chen, Xi Liu, Haiquan Zhao, and Jose C. Principe. Maximum correntropy Kalman filter. Automatica, 76:70–77, feb 2017.
  8. [8] RP Agarwal, M Meehan, and D O’regan. Fixed point theory and applications. Cambridge university press, 2001, 141, 2001.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.