REFERENCES
- [1]Sun, G., Dong, B., Cao, M., Wei, B., & Hu, C. 2011. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chemistry of Materials, 23(6), 1587-1593. doi: 10.1021/cm103441u
- [2]Idris, F. M., Hashim, M., Abbas, Z., Ismail, I., Nazlan, R., & Ibrahim, I. R. 2016. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies. Journal of Magnetism and Magnetic Materials, 405, 197-208. doi: 10.1016/j.jmmm.2015.12.070
- [3]Wang, T., Han, R., Tan, G., Wei, J., Qiao, L., & Li, F. 2012. Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. Journal of Applied Physics, 112(10), 104903. doi : 10.1063/1.4767365
- [4]Zhu, C. L., Zhang, M. L., Qiao, Y. J., Xiao, G., Zhang, F., & Chen, Y. J. 2010. Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. The Journal of Physical Chemistry C, 114(39), 16229-16235. doi: 10.1021/jp104445m
- [5]Gargama, H., Thakur, A. K., & Chaturvedi, S. K. 2016. Polyvinylidene fluoride/nanocrystalline iron composite materials for EMI shielding and absorption applications. Journal of Alloys and Compounds, 654, 209-215. Doi: 10.1016/j.jallcom.2015.09.059
- [6]Wang, Z., & Guang-Lin, Z. 2013. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz. Open Journal of Composite Materials, 3(2), 17-23. doi: 10.4236/ojcm.2013.32003
- [7]Qin, F., & Brosseau, C. 2012. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. Journal of applied physics, 111(6), 061301. doi: 10.1063/1.3688435
- [8]Zhang, X. F., Dong, X. L., Huang, H., Liu, Y. Y., Wang, W. N., Zhu, X. G., & Lee, C. G. 2006. Microwave absorption properties of the carbon-coated nickel nanocapsules. Applied Physics Letters, 89(5), 053115. doi: 10.1063/1.2236965
- [9]Jiao, D., Fan, X., Tian, N., You, C., & Zhang, G. 2017. Improved magnetic and microwave absorption properties of manganese nitrides through the addition of ferrous. Journal of Alloys and Compounds, 703, 13-18. doi: 10.1016/j.jallcom.2017.01.327
- [10]Chen, Y., Zhang, H. B., Huang, Y., Jiang, Y., Zheng, W. G., & Yu, Z. Z. 2015. Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding. Composites Science and Technology, 118, 178-185. doi: 10.1016/j.compscitech.2015.08.023
- [11]Shen, X., Song, F., Yang, X., Wang, Z., Jing, M., & Wang, Y. 2015. Hexaferrite/α-iron composite nanowires: Microstructure, exchange-coupling interaction and microwave absorption. Journal of Alloys and Compounds, 621, 146-153. doi: 10.1016/j.jallcom.2014.09.181
- [12]Hu, C., Mou, Z., Lu, G., Chen, N., Dong, Z., Hu, M., & Qu, L. (2013). 3D graphene–Fe3O4 nanocomposites with high-performance microwave absorption. Physical Chemistry Chemical Physics, 15(31), 13038-13043. doi: 10.1039/C3CP51253C
- [13]Sun, X., He, J., Li, G., Tang, J., Wang, T., Guo, Y., & Xue, H. (2013). Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 1(4), 765-777. doi: 10.1039/C2TC00159D
- [14]Tyagi, S., Baskey, H. B., Agarwala, R. C., Agarwala, V., & Shami, T. C. (2011). Synthesis and characterization of microwave absorbing SrFe12O19/ZnFe2O4 nanocomposite. Transactions of the Indian Institute of Metals, 64(6), 607-614. doi: 10.1007/s12666-011-0068-7
- [15]Sutka, A., Stingaciu, M., Jakovlevs, D., & Mezinskis, G. (2014). Comparison of different methods to produce dense zinc ferrite ceramics with high electrical resistance. Ceramics International, 40(1), 2519-2522. doi: 10.1016/j.ceramint.2013.07.093
- [16]Singh, J. P., Payal, R. S., Srivastava, R. C., Agrawal, H. M., Chand, P., Tripathi, A., & Tripathi, R. P. (2010). Effect of thermal treatment on the magnetic properties of nanostructured zinc ferrite. In Journal of Physics: Conference Series, 217(1), 1-4. doi: 10.1088/1742-6596/217/1/012108
- [17]Jeyadevan, B., Tohji, K., & Nakatsuka, K. (1994). Structure analysis of coprecipitated ZnFe2O4 by extended x‐ray‐absorption fine structure. Journal of Applied Physics, 76(10), 6325-6327. doi: 10.1063/1.358255
- [18]Roy, M. K., & Verma, H. C. (2006). Magnetization anomalies of nanosize zinc ferrite particles prepared using electrodeposition. Journal of magnetism and magnetic materials, 306(1), 98-102. doi: 10.1016/j.jmmm.2006.02.229
- [19]Goya, G. F., & Rechenberg, H. R. (1999). Ionic disorder and Néel temperature in ZnFe2O4 nanoparticles. Journal of magnetism and magnetic materials, 196, 191-192. doi: 10.1016/S0304-8853(98)00723-9
- [20]Chinnasamy, C. N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Guerault, H., & Greneche, J. M. (2000). Magnetic properties of nanostructured ferrimagnetic zinc ferrite. Journal of Physics: Condensed Matter, 12(35), 7795. doi: 10.1088/0953-8984/12/35/314
- [21]Lakeman, C. D., & Payne, D. A. (1994). Sol-gel processing of electrical and magnetic ceramics. Materials Chemistry and Physics, 38(4), 305-324. doi: 10.1016/0254-0584(94)90207-0
- [22]Weng, X., Li, B., Zhang, Y., Lv, X., & Gu, G. (2017). Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. Journal of Alloys and Compounds, 695, 508-519. doi: 10.1016/j.jallcom.2016.11.083
- [23]Li, F., Jiang, X., Zhao, J., & Zhang, S. (2015). Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano energy, 16, 488-515. doi: 10.1016/j.nanoen.2015.07.014
- [24]Kuila, T., Bose, S., Mishra, A. K., Khanra, P., Kim, N. H., & Lee, J. H. (2012). Chemical functionalization of graphene and its applications. Progress in Materials Science, 57(7), 1061-1105. doi: 10.1016/j.pmatsci.2012.03.002
- [25]Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y., & Qiu, J. (2012). The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 50(9), 3267-3273. doi: 10.1016/j.carbon.2011.12.005
- [26]Sun, Y., Wu, Q., & Shi, G. (2011). Graphene based new energy materials. Energy & Environmental Science, 4(4), 1113-1132. doi: 10.1039/C0EE00683A
- [27]Du, Y., Liu, W., Qiang, R., Wang, Y., Han, X., Ma, J., & Xu, P. 2014. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS applied materials & interfaces, 6(15), 12997-13006. doi: 10.1021/am502910d
- [28]Zhang, H., Xie, A., Wang, C., Wang, H., Shen, Y., & Tian, X. 2013. Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. Journal of Materials Chemistry A, 1(30), 8547-8552. doi: 10.1039/C3TA11278K
- [29]Kumar, R., Singh, R. K., Singh, J., Tiwari, R. S., & Srivastava, O. N. 2012. Synthesis, characterization and optical properties of graphene sheets-ZnO multipod nanocomposites. Journal of Alloys and Compounds, 526, 129-134. doi: 10.1016/j.jallcom.2012.02.115
- [30]Campo, N., & Visco, A. M. 2010. Incorporation of carbon nanotubes into ultra high molecular weight polyethylene by high energy ball milling. International Journal of Polymer Analysis and Characterization, 15(7), 438-449. doi: 10.1080/1023666X.2010.510110
- [31]Hekmatara, H., Seifi, M., Forooraghi, K., & Mirzaee, S. 2014. Synthesis and microwave absorption characterization of SiO2 coated Fe3O4–MWCNT composites. Physical Chemistry Chemical Physics, 16(43), 24069-24075. doi: 10.1039/C4CP03208J
- [32]Mbuyisa, P. N., Rigoni, F., Sangaletti, L., Ponzoni, S., Pagliara, S., Goldoni, A., & Cepek, C. 2016. Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods. Nanotechnology, 27(14), 1-8. Doi: 10.1088/0957-4484/27/14/145605
- [33]Chen, Y., Lei, Z., Wu, H., Zhu, C., Gao, P., Ouyang, Q., & Qin, W. (2013). Electromagnetic absorption properties of graphene/Fe nanocomposites. Materials Research Bulletin, 48(9), 3362-3366. doi: 10.1016/j.materresbull.2013.05.020
- [34]Luukkonen, O., Maslovski, S. I., & Tretyakov, S. A. (2011). A stepwise Nicolson–Ross–Weir-based material parameter extraction method. IEEE antennas and wireless propagation letters, 10, 1295-1298. doi: 10.1109/LAWP.2011.2175897
- [35]Maeda, T., Sugimoto, S., Kagotani, T., Tezuka, N., & Inomata, K. 2004. Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds. Journal of Magnetism and Magnetic Materials, 281(2-3), 195-205. doi: 10.1016/j.jmmm.2004.04.105
- [36]Singh, N. B., & Agarwal, A. (2018). Preparation, characterization, properties and applications of nano zinc ferrite. Materials Today: Proceedings, 5(3), 9148-9155. doi: 10.1016/j.matpr.2017.10.035
- [37] Liu, P., Ren, Y., Ma, W., Ma, J., & Du, Y. (2018). Degradation of shale gas produced water by magnetic porous MFe2O4 (M= Cu, Ni, Co and Zn) heterogeneous catalyzed ozone. Chemical Engineering Journal, 345, 98-106. doi: 10.1016/j.cej.2018.03.145
- [38] Shu, R., Zhang, G., Zhang, J., Wang, X., Wang, M., Gan, Y., Shi, J., & He, J. (2018). Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. Journal of Alloys and Compounds, 736, 1-11. doi: 10.1016/j.jallcom.2017.11.084
- [39] Bayındır, O., & Alanyalıoğlu, M. (2019). Azure B Nanocomposites of Chemically and Electrochemically Produced Graphene Oxide: Comparison of Amperometric Sensor Performance for NADH. IEEE Sensors Journal, 19(3), 812-819. doi: 10.1109/JSEN.2018.2879651
- [40]Kumar, K. K., Brindha, R., Nandhini, M., Selvam, M., Saminathan, K., & Sakthipandi, K. (2019). Water-suspended graphene as electrolyte additive in zinc-air alkaline battery system. Ionics, 1-9. doi: 10.1007/s11581-019-02924-7
- [41Dadras, S., & Faraji, M. (2018). Improved carbon nanotube growth inside an anodic aluminum oxide template using microwave radiation. Journal of Physics and Chemistry of Solids, 116, 203-208. doi: 10.1016/j.jpcs.2018.01.039
- [42]Selvam, M., Sakthipandi, K., Suriyaprabha, R., Saminathan, K., & Rajendran, V. (2013). Synthesis and characterization of electrochemically-reduced graphene. Bulletin of Materials Science, 36(7), 1315-1321. doi: 10.1007/s12034-013-0581-x
- [43] Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38-49. doi: 10.1016/j.carbon.2012.10.013
- [44] Mudila, H., Rana, S., & Zaidi, M. G. H. (2016). Electrochemical performance of zirconia/graphene oxide nanocomposites cathode designed for high power density supercapacitor. Journal of Analytical Science and Technology, 7(1), 1-11. doi: 10.1186/s40543-016-0084-7
- [45]Khurana, G., Kumar, N., Kooriyattil, S., & Katiyar, R. S. (2015). Structural, magnetic, and dielectric properties of graphene oxide/ZnxFe1−xFe2O4 composites. Journal of Applied Physics, 117(17), 1-4. doi: 10.1063/1.4908146
- [46]Xin, G., Da Wei, He., Yong Sheng, Wang., Wen, Zhao., Yi Kang, Zhou & Shu Lei, Li. (2015). Synthesis and microwave absorption properties of graphene-oxide (GO)/polyaniline nanocomposite with Fe3O4 particles. Chinese Physics. B, 24(2), 436-440. doi: 10.1088/1674-1056/24/2/027803
- [47]Shu, R., Zhang, G., Zhang, J., Wang, X., Wang, M., Gan, Y., Shi, J & He, J. (2018). Synthesis and high-performance microwave absorption of reduced graphene oxide/zinc ferrite hybrid nanocomposite. Materials Letters, 215, 229-232. Doi: 10.1016/j.matlet.2017.12.108
- [48] Chen, C. C., Liang, W. F., Nien, Y. H., Liu, H. K., & Yang, R. B. (2017). Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites. Materials Research Bulletin, 96, 81-85. doi: 10.1016/j.materresbull.2017.01.045
- [49] Zhu, L., Zeng, X., Li, X., Yang, B., & Yu, R. 2017. Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances. Journal of Magnetism and Magnetic Materials, 426, 114-120. doi: 10.1016/j.jmmm.2016.11.063
- [50]Malas, A., Bharati, A., Verkinderen, O., Goderis, B., Moldenaers, P., & Cardinaels, R. (2017). Effect of the GO reduction method on the dielectric properties, electrical conductivity and crystalline behavior of PEO/rGO nanocomposites. Polymers, 9(11), 1-21. doi: 10.3390/polym9110613
- [51]Acharya, S., Ray, J., Patro, T. U., Alegaonkar, P., & Datar, S. (2018). Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly (methyl methacrylate) composites. Nanotechnology, 29(11), 1-14. doi: 10.1088/1361-6528/aaa805
- [52]Chen, D., Wang, G. S., He, S., Liu, J., Guo, L., & Cao, M. S. (2013). Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. Journal of Materials Chemistry A, 1(19), 5996-6003. doi: 10.1039/C3TA10664K
- [53]Singh, V. K., Shukla, A., Patra, M. K., Saini, L., Jani, R. K., Vadera, S. R., & Kumar, N. (2012). Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon, 50(6), 2202-2208. doi: 10.1016/j.carbon.2012.01.033