Yi Lin Chan1, Kok Yeow You2, Mohd Zul Hilmi Mayzan1, Mohamad Ashry Jusoh3, Zulkifly Abbas4, and Fahmiruddin Esa This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Material Physics Laboratory, Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 84600 Pagoh, Muar, Johor, Malaysia
2Radar Laboratory, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
3Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
4RF Microwave Laboratory, Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400 Seri Kembangan, Selangor, Malaysia 


Received: May 9, 2019
Accepted: November 5, 2019
Publication Date: December 1, 2020

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.6180/jase.202012_23(4).0003  


Composite absorbing material is a branch of study that relates electromagnetic compatibility to radio and microwave frequency applications. Thus, many researchers have been made to focus on the composite fabrication and its characteristic of microwave signal performance. Generally, a light weight, high absorption and low cost absorber is highly demanded. Therefore, this work aims to investigate the return loss (RL) characteristics of graphene oxide/zinc ferrite/epoxy composite in the range of frequency 8.2 GHz to 12.4 GHz. The structural patterns of graphene oxide (GO) and Zn ferrite (ZnFe2O4) were confirmed by X-ray diffraction (XRD). Surface morphologies of the composites were characterized by Coxem Table Top SEM equipped with an energy dispersive spectroscopy (EDS) system and the tracing elements were identified. The bulk density of ZnFe2O4 could be reduced by addition of GO based on the measurement results. Electromagnetic properties were calculated using Nicolson-Ross-Weir (NRW) conversion technique based on measured S-parameters by vector network analyzer (VNA). Complex relative permittivity increases as the GO content increases due to the increment of dipolar polarization whereas a minor change occurred in permeability. Generally, the dissipation factor happens in the range of 10 – 11 GHz for both properties. A minimum RL is found to be -12.7 dB at 10.5 GHz with 2.35 mm for 3-GO-ZnFe2O4 composite sample. The RL performance of the sample could be tuned as low as -55 dB using higher thickness samples.

Keywords: Graphene oxide; Zinc ferrite; Composite materials; Return loss; Electromagnetic properties


  1. [1]Sun, G., Dong, B., Cao, M., Wei, B., & Hu, C. 2011. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chemistry of Materials, 23(6), 1587-1593. doi: 10.1021/cm103441u
  2. [2]Idris, F. M., Hashim, M., Abbas, Z., Ismail, I., Nazlan, R., & Ibrahim, I. R. 2016. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies. Journal of Magnetism and Magnetic Materials, 405, 197-208. doi: 10.1016/j.jmmm.2015.12.070
  3. [3]Wang, T., Han, R., Tan, G., Wei, J., Qiao, L., & Li, F. 2012. Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. Journal of Applied Physics, 112(10), 104903. doi : 10.1063/1.4767365
  4. [4]Zhu, C. L., Zhang, M. L., Qiao, Y. J., Xiao, G., Zhang, F., & Chen, Y. J. 2010. Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. The Journal of Physical Chemistry C, 114(39), 16229-16235. doi: 10.1021/jp104445m
  5. [5]Gargama, H., Thakur, A. K., & Chaturvedi, S. K. 2016. Polyvinylidene fluoride/nanocrystalline iron composite materials for EMI shielding and absorption applications. Journal of Alloys and Compounds, 654, 209-215. Doi: 10.1016/j.jallcom.2015.09.059
  6. [6]Wang, Z., & Guang-Lin, Z. 2013. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz. Open Journal of Composite Materials, 3(2), 17-23. doi: 10.4236/ojcm.2013.32003
  7. [7]Qin, F., & Brosseau, C. 2012. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. Journal of applied physics, 111(6), 061301. doi: 10.1063/1.3688435
  8. [8]Zhang, X. F., Dong, X. L., Huang, H., Liu, Y. Y., Wang, W. N., Zhu, X. G., & Lee, C. G. 2006. Microwave absorption properties of the carbon-coated nickel nanocapsules. Applied Physics Letters, 89(5), 053115. doi: 10.1063/1.2236965
  9. [9]Jiao, D., Fan, X., Tian, N., You, C., & Zhang, G. 2017. Improved magnetic and microwave absorption properties of manganese nitrides through the addition of ferrous. Journal of Alloys and Compounds, 703, 13-18. doi: 10.1016/j.jallcom.2017.01.327
  10. [10]Chen, Y., Zhang, H. B., Huang, Y., Jiang, Y., Zheng, W. G., & Yu, Z. Z. 2015. Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding. Composites Science and Technology, 118, 178-185. doi: 10.1016/j.compscitech.2015.08.023
  11. [11]Shen, X., Song, F., Yang, X., Wang, Z., Jing, M., & Wang, Y. 2015. Hexaferrite/α-iron composite nanowires: Microstructure, exchange-coupling interaction and microwave absorption. Journal of Alloys and Compounds, 621, 146-153. doi: 10.1016/j.jallcom.2014.09.181
  12. [12]Hu, C., Mou, Z., Lu, G., Chen, N., Dong, Z., Hu, M., & Qu, L. (2013). 3D graphene–Fe3O4 nanocomposites with high-performance microwave absorption. Physical Chemistry Chemical Physics, 15(31), 13038-13043. doi: 10.1039/C3CP51253C
  13. [13]Sun, X., He, J., Li, G., Tang, J., Wang, T., Guo, Y., & Xue, H. (2013). Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 1(4), 765-777. doi: 10.1039/C2TC00159D
  14. [14]Tyagi, S., Baskey, H. B., Agarwala, R. C., Agarwala, V., & Shami, T. C. (2011). Synthesis and characterization of microwave absorbing SrFe12O19/ZnFe2O4 nanocomposite. Transactions of the Indian Institute of Metals, 64(6), 607-614. doi: 10.1007/s12666-011-0068-7
  15. [15]Sutka, A., Stingaciu, M., Jakovlevs, D., & Mezinskis, G. (2014). Comparison of different methods to produce dense zinc ferrite ceramics with high electrical resistance. Ceramics International, 40(1), 2519-2522. doi: 10.1016/j.ceramint.2013.07.093
  16. [16]Singh, J. P., Payal, R. S., Srivastava, R. C., Agrawal, H. M., Chand, P., Tripathi, A., & Tripathi, R. P. (2010). Effect of thermal treatment on the magnetic properties of nanostructured zinc ferrite. In Journal of Physics: Conference Series, 217(1), 1-4. doi: 10.1088/1742-6596/217/1/012108
  17. [17]Jeyadevan, B., Tohji, K., & Nakatsuka, K. (1994). Structure analysis of coprecipitated ZnFe2O4 by extended x‐ray‐absorption fine structure. Journal of Applied Physics, 76(10), 6325-6327. doi: 10.1063/1.358255
  18. [18]Roy, M. K., & Verma, H. C. (2006). Magnetization anomalies of nanosize zinc ferrite particles prepared using electrodeposition. Journal of magnetism and magnetic materials, 306(1), 98-102. doi: 10.1016/j.jmmm.2006.02.229
  19. [19]Goya, G. F., & Rechenberg, H. R. (1999). Ionic disorder and Néel temperature in ZnFe2O4 nanoparticles. Journal of magnetism and magnetic materials, 196, 191-192. doi: 10.1016/S0304-8853(98)00723-9
  20. [20]Chinnasamy, C. N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Guerault, H., & Greneche, J. M. (2000). Magnetic properties of nanostructured ferrimagnetic zinc ferrite. Journal of Physics: Condensed Matter, 12(35), 7795. doi: 10.1088/0953-8984/12/35/314
  21. [21]Lakeman, C. D., & Payne, D. A. (1994). Sol-gel processing of electrical and magnetic ceramics. Materials Chemistry and Physics, 38(4), 305-324. doi: 10.1016/0254-0584(94)90207-0
  22. [22]Weng, X., Li, B., Zhang, Y., Lv, X., & Gu, G. (2017). Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. Journal of Alloys and Compounds, 695, 508-519. doi: 10.1016/j.jallcom.2016.11.083
  23. [23]Li, F., Jiang, X., Zhao, J., & Zhang, S. (2015). Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano energy, 16, 488-515. doi: 10.1016/j.nanoen.2015.07.014
  24. [24]Kuila, T., Bose, S., Mishra, A. K., Khanra, P., Kim, N. H., & Lee, J. H. (2012). Chemical functionalization of graphene and its applications. Progress in Materials Science, 57(7), 1061-1105. doi: 10.1016/j.pmatsci.2012.03.002
  25. [25]Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y., & Qiu, J. (2012). The role of microwave absorption on formation of graphene from graphite oxide. Carbon, 50(9), 3267-3273. doi: 10.1016/j.carbon.2011.12.005
  26. [26]Sun, Y., Wu, Q., & Shi, G. (2011). Graphene based new energy materials. Energy & Environmental Science, 4(4), 1113-1132. doi: 10.1039/C0EE00683A
  27. [27]Du, Y., Liu, W., Qiang, R., Wang, Y., Han, X., Ma, J., & Xu, P. 2014. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS applied materials & interfaces, 6(15), 12997-13006. doi: 10.1021/am502910d
  28. [28]Zhang, H., Xie, A., Wang, C., Wang, H., Shen, Y., & Tian, X. 2013. Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. Journal of Materials Chemistry A, 1(30), 8547-8552. doi: 10.1039/C3TA11278K
  29. [29]Kumar, R., Singh, R. K., Singh, J., Tiwari, R. S., & Srivastava, O. N. 2012. Synthesis, characterization and optical properties of graphene sheets-ZnO multipod nanocomposites. Journal of Alloys and Compounds, 526, 129-134. doi: 10.1016/j.jallcom.2012.02.115
  30. [30]Campo, N., & Visco, A. M. 2010. Incorporation of carbon nanotubes into ultra high molecular weight polyethylene by high energy ball milling. International Journal of Polymer Analysis and Characterization, 15(7), 438-449. doi: 10.1080/1023666X.2010.510110
  31. [31]Hekmatara, H., Seifi, M., Forooraghi, K., & Mirzaee, S. 2014. Synthesis and microwave absorption characterization of SiO2 coated Fe3O4–MWCNT composites. Physical Chemistry Chemical Physics, 16(43), 24069-24075. doi: 10.1039/C4CP03208J
  32. [32]Mbuyisa, P. N., Rigoni, F., Sangaletti, L., Ponzoni, S., Pagliara, S., Goldoni, A., & Cepek, C. 2016. Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods. Nanotechnology, 27(14), 1-8. Doi: 10.1088/0957-4484/27/14/145605
  33. [33]Chen, Y., Lei, Z., Wu, H., Zhu, C., Gao, P., Ouyang, Q., & Qin, W. (2013). Electromagnetic absorption properties of graphene/Fe nanocomposites. Materials Research Bulletin, 48(9), 3362-3366. doi: 10.1016/j.materresbull.2013.05.020
  34. [34]Luukkonen, O., Maslovski, S. I., & Tretyakov, S. A. (2011). A stepwise Nicolson–Ross–Weir-based material parameter extraction method. IEEE antennas and wireless propagation letters, 10, 1295-1298. doi: 10.1109/LAWP.2011.2175897
  35. [35]Maeda, T., Sugimoto, S., Kagotani, T., Tezuka, N., & Inomata, K. 2004. Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds. Journal of Magnetism and Magnetic Materials, 281(2-3), 195-205. doi: 10.1016/j.jmmm.2004.04.105
  36. [36]Singh, N. B., & Agarwal, A. (2018). Preparation, characterization, properties and applications of nano zinc ferrite. Materials Today: Proceedings, 5(3), 9148-9155. doi: 10.1016/j.matpr.2017.10.035
  37. [37] Liu, P., Ren, Y., Ma, W., Ma, J., & Du, Y. (2018). Degradation of shale gas produced water by magnetic porous MFe2O4 (M= Cu, Ni, Co and Zn) heterogeneous catalyzed ozone. Chemical Engineering Journal, 345, 98-106. doi: 10.1016/j.cej.2018.03.145
  38. [38] Shu, R., Zhang, G., Zhang, J., Wang, X., Wang, M., Gan, Y., Shi, J., & He, J. (2018). Fabrication of reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite hybrid composites as high-performance microwave absorbers. Journal of Alloys and Compounds, 736, 1-11. doi: 10.1016/j.jallcom.2017.11.084
  39. [39] Bayındır, O., & Alanyalıoğlu, M. (2019). Azure B Nanocomposites of Chemically and Electrochemically Produced Graphene Oxide: Comparison of Amperometric Sensor Performance for NADH. IEEE Sensors Journal, 19(3), 812-819. doi: 10.1109/JSEN.2018.2879651
  40. [40]Kumar, K. K., Brindha, R., Nandhini, M., Selvam, M., Saminathan, K., & Sakthipandi, K. (2019). Water-suspended graphene as electrolyte additive in zinc-air alkaline battery system. Ionics, 1-9. doi: 10.1007/s11581-019-02924-7
  41. [41Dadras, S., & Faraji, M. (2018). Improved carbon nanotube growth inside an anodic aluminum oxide template using microwave radiation. Journal of Physics and Chemistry of Solids, 116, 203-208. doi: 10.1016/j.jpcs.2018.01.039
  42. [42]Selvam, M., Sakthipandi, K., Suriyaprabha, R., Saminathan, K., & Rajendran, V. (2013). Synthesis and characterization of electrochemically-reduced graphene. Bulletin of Materials Science, 36(7), 1315-1321. doi: 10.1007/s12034-013-0581-x
  43. [43] Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38-49. doi: 10.1016/j.carbon.2012.10.013
  44. [44] Mudila, H., Rana, S., & Zaidi, M. G. H. (2016). Electrochemical performance of zirconia/graphene oxide nanocomposites cathode designed for high power density supercapacitor. Journal of Analytical Science and Technology, 7(1), 1-11. doi: 10.1186/s40543-016-0084-7
  45. [45]Khurana, G., Kumar, N., Kooriyattil, S., & Katiyar, R. S. (2015). Structural, magnetic, and dielectric properties of graphene oxide/ZnxFe1−xFe2O4 composites. Journal of Applied Physics, 117(17), 1-4. doi: 10.1063/1.4908146
  46. [46]Xin, G., Da Wei, He., Yong Sheng, Wang., Wen, Zhao., Yi Kang, Zhou & Shu Lei, Li. (2015). Synthesis and microwave absorption properties of graphene-oxide (GO)/polyaniline nanocomposite with Fe3O4 particles. Chinese Physics. B, 24(2), 436-440. doi: 10.1088/1674-1056/24/2/027803
  47. [47]Shu, R., Zhang, G., Zhang, J., Wang, X., Wang, M., Gan, Y., Shi, J & He, J. (2018). Synthesis and high-performance microwave absorption of reduced graphene oxide/zinc ferrite hybrid nanocomposite. Materials Letters, 215, 229-232. Doi: 10.1016/j.matlet.2017.12.108
  48. [48] Chen, C. C., Liang, W. F., Nien, Y. H., Liu, H. K., & Yang, R. B. (2017). Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites. Materials Research Bulletin, 96, 81-85. doi: 10.1016/j.materresbull.2017.01.045
  49. [49] Zhu, L., Zeng, X., Li, X., Yang, B., & Yu, R. 2017. Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances. Journal of Magnetism and Magnetic Materials, 426, 114-120. doi: 10.1016/j.jmmm.2016.11.063
  50. [50]Malas, A., Bharati, A., Verkinderen, O., Goderis, B., Moldenaers, P., & Cardinaels, R. (2017). Effect of the GO reduction method on the dielectric properties, electrical conductivity and crystalline behavior of PEO/rGO nanocomposites. Polymers, 9(11), 1-21. doi: 10.3390/polym9110613
  51. [51]Acharya, S., Ray, J., Patro, T. U., Alegaonkar, P., & Datar, S. (2018). Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly (methyl methacrylate) composites. Nanotechnology, 29(11), 1-14. doi: 10.1088/1361-6528/aaa805
  52. [52]Chen, D., Wang, G. S., He, S., Liu, J., Guo, L., & Cao, M. S. (2013). Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. Journal of Materials Chemistry A, 1(19), 5996-6003. doi: 10.1039/C3TA10664K
  53. [53]Singh, V. K., Shukla, A., Patra, M. K., Saini, L., Jani, R. K., Vadera, S. R., & Kumar, N. (2012). Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon, 50(6), 2202-2208. doi: 10.1016/j.carbon.2012.01.033

Latest Articles