P. M. Balasubramaniam1 and S. U. Prabha 2
1Department of Electrical and Electronics Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
2Department of Electrical and Electronics Engineering, Sri Ramakrishna Engineering College, Coimbatore, India
Received:
September 24, 2013
Accepted:
July 23, 2015
Publication Date:
December 1, 2015
Download Citation:
||https://doi.org/10.6180/jase.2015.18.4.08
ABSTRACT
Classically, the aim of the electric power system is to generate electrical energy and to deliver this energy to the end-user equipment at an acceptable voltage. As nonlinear loads draw harmonic and reactive power components of current from ac mains, the quality of power deteriorates. This paper presents a review of the main power quality (PQ) problems with their associated causes and solutions with codes and standards. This paper concludes with some solutions to mitigate the Power Quality problems are presented.
Keywords:
IEEE 519, Total Harmonic Distortion, Point of Common Coupling, Total Demand Distortion
REFERENCES
- [1] Bollen, M., “Understanding Power Quality Problems Voltage Sags and Interruptions”, IEEE Press Series on Power Engineering John Wiley and Sons, Piscataway, USA (2000). doi: 10.1109/9780470546840. ch4
- [2] Rajakumar, P., et al., Review on Power Quality Issues, IRACST Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498, Vol. 2, No. 1 (2012).
- [3] Delgado, J., Gestão da Qualidade Total Aplicada ao Sector do Fornecimento da Energia Eléctrica, Ph. D. Dissertation Electrotechnical Engineering, Universidade de Coimbra, Portugal September (2002).
- [4] Choi, W. Y., Kwon, J., Kim, E. H., Lee, J. J. and Kwon, B. H., “Bridgeless Boost Rectifier with Low Conduction Losses and Reduced Diode Reverse Recovery Problems,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 769780 (2007). doi: 10.1109/TIE.2007.891991
- [5] Lin, T., Domijan, A., Jr. and Chu, F., “ASurvey of Techniques for Power Quality Monitoring,” Int. J. Power Energy Syst., Vol. 25, No. 3, pp. 167172 (2012).
- [6] Chen, G., Chen, Y. and Smedley, K. M., “Three-phase Four-leg Active Power Quality Conditioner without References Calculation,” Proc. Appl. Power Electron. Conf., pp. 587593 (2004). doi: 10.1109/APEC.2004. 1295866
- [7] López, Y.-K., de Vicuña, L. G., Castilla, M., Matas, J. and López, M., “Sliding-mode-control Design of a High-power-factor Buck-boost-rectifier,” IEEE Trans. Ind. Electron., Vol. 46, pp. 604612 (1999).
- [8] Mollov, S. V. and Forsyth, A. J., “Analysis, Design and Resonant Current Control for a 1-MHz High-powerfactor Rectifier,” IEEE Trans. Ind. Electron., Vol. 46, pp. 620627 (1999). doi: 10.1109/41.767070
- [9] García, A. J., Cobos, J. A., Prieto, R., Alou, P. and Uceda, J., “An Alternative to Supply DC Voltages with High Power Factor,” IEEE Trans. Ind. Electron., Vol. 46, pp. 703709 (1999). doi: 10.1109/41.778219
- [10] Lee, J.-Y., Moon, G.-W. and Youn, M.-J., “Design of a Power-factor-Correction Converter Based on Halfbridge Topology,” IEEE Trans. Ind. Electron., Vol. 46, pp. 710723 (1999). doi: 10.1109/41.778222
- [11] Madigan, M. T., Erickson, R. W. and Ismail, E. H., “Integrated High-quality Rectifier-regulators,” IEEE Trans. Ind. Electron., Vol. 46, pp. 749758 (1999). doi: 10.1109/41.778229
- [12] Wu, T.-F. and Chen, Y.-K., “Analysis and Design of an Isolated Single Stage Converter Achieving Power-factor Correction and Fast Regulation,” IEEE Trans. Ind. Electron., Vol. 46, pp. 759767 (1999). doi: 10.1109/ 41.778230
- [13] Hsieh, G.-C. and Wang, C.-M., “ZCS-PWM Full-wave Boost Rectifier with Unity Power Factor and Low Conduction Losses,” IEEE Trans. Ind. Electron., Vol. 46, pp. 768779 (1999). doi: 10.1109/41.778234
- [14] Tseng, C.-J. and Chen, C.-L., “ANovel ZVT PWM Cúk Power-factor Corrector,” IEEE Trans. Ind. Electron., Vol. 46, pp. 780787 (1999). doi: 10.1109/41.778240
- [15] Ferracci, P., “Power Quality,” Schneider Electric Cahier Technique, No. 199, September (2012).
- [16] Zhu, P., Li, X., Kang, Y. and Chen, J., “A Novel Control Scheme in 2-phase Unified Power Quality Conditioner,” in Proc. 29th Annu. Conf. IEEE Ind. Electron. Soc., pp. 169171622 (2003). doi: 10.1109/TIE.2014. 2314055
- [17] Ghosh, A., Jindal, A. K. and Joshi, A., “Modified Power Quality Conditioner for Voltage Regulation of Critical Load Bus,” Proc. Power Eng. Soc. Gen. Meet., pp. 471476 (2004). doi: 10.1109/PES.2004.1372840
- [18] Cheng, Y. and Philippe, L., “Advanced Control Methods for the 3-phase Unified Power Quality Conditioner,” Proc. Power Electron. Spec. Conf., pp. 4263 4267 (2004). doi: 10.1109/PESC.2004.1354754
- [19] Tlusty, J. and Valouch, V., “Effectiveness of Unified Power Quality Conditioner for Flicker Mitigation,” Proc. 4th Int. Power Electron. Motion Control Conf., pp. 902907 (2004).
- [20] Khadkikar, V., Agarwal, P., Chandra, A., Barry, A. and Nguyen, T., “A Simple New Control Technique for Unified Power Quality Conditioner (UPQC),” Proc. 11th Int. Conf. Harmonics Quality Power, pp. 289 293 (2004). doi: 10.1109/ICHQP.2004.1409369
- [21] Esfandiari, A., Parniani, M. and Mokhtari, H., “Mitigation of Electric Arc Furnace Disturbances Using the Unified Power Quality Conditioner,” Proc. 30th Annu. Conf. Ind. Electron. Soc., pp. 14691474 (2004). doi: 10.1109/IECON.2004.1431795
- [22] Sepulveda, C. A., Espinoza, J. R., Moran, L. A. and Ortega, R., “Analysis and Design of a Linear Control Strategy for Three-phase UPQCs,” Proc. 30th Annu. Conf. IEEE Ind. Electron. Soc., Vol. 3, pp. 30603065 (2004). doi: 10.1109/IECON.2004.1432300
- [23] Ng, F., Wong, M. C. and Han, Y. D., “Analysis and Control of UPQC and its DC-link Power by Use of pq-r Instantaneous Power Theory,” Proc. Power Electron. Syst. Appl., pp. 4353 (2004). doi: 10.1109/TPEL. 2004.826499
- [24] Tey, L. H., So, P. L. and Chu, Y. C., “Unified Power Quality Conditioner for Improving Power Quality Using ANN with Hysteresis Control,” Proc. Int. Conf. Power Syst. Technol., pp. 14411446 (2004). doi: 10. 1109/ICPST.2004.1460229
- [25] Vinod Khadkikar, Enhancing Electric Power Quality Using UPQC: A Comprehensive Overview, IEEE Transactions on Power Electronics, Vol. 27, No. 5 (2012). doi: 10.1109/TPEL.2011.2172001
- [26] Ribeiro, P., Johnson, B., Crow, M., Arsoy, A. and Liu, Y., “Energy Storage Systems for Advanced Power Applications,” Proceedings of the IEEE, Vol. 89, No. 12, (2001). doi: 10.1109/5.975900
- [27] Kwon, J. M., Choi, W. Y. and Kwon, B. H., “Cost-effective Boost Converter with Reverse-recovery Reduction and Power Factor Correction,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 471473 (2008). doi: 10.1109/TIE.2007.896526
- [28] Tofoli, F. L., Coelho, E. A. A., de Freitas, L. C., Farias, V. J. and Vieira, J. B. Jr., “Proposal of a Soft-switching Single-phase Three-level Rectifier,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 107113 (2008). doi: 10. 1109/TIE.2007.896052
- [29] IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Std. 1159-2009 (2009).
- [30] Ghosh, A., Jindal, A. K. and Joshi, A., “Inverter Control Using Output Feedback for Power Compensating Devices,” Proc. Convergent Technol. Conf., pp. 48 52 (2003). doi: 10.1109/TENCON.2003.1273212
- [31] Rodríguez, E., Abud, D. and Arau, J., “A Novel Singlestage Single-phase DC Uninterruptible Power Supply with Power-factor Correction,” IEEE Trans. Ind. Electron., Vol. 46, pp. 11371147 (1999). doi: 10.1109/41. 808002
- [32] Alonso, J. M., Calleja, A. J., López, E., Ribas, J. and Scades, M. R., “A Novel Single-stage Constant-wattage High-power-factor Electronic Ballast,” IEEE Trans. Ind. Electron., Vol. 46, pp. 11481158 (1999). doi: 10. 1109/41.808004
- [33] Pires, V. F. and Silva, J. F., “Half-bridge Single-phase Buck-boost Type AC-DC Converter with Sliding Mode Control of the Input Source Current,” Proc. IEEElect. Power Applicat., Vol. 147, No. 1, pp. 6167 (2000). doi: 10.1049/ip-epa:20000020
- [34] Siu, K.-W. and Lee, Y.-S., “A Novel High-efficiency Flyback Power-factor Correction Circuit with Regenerative Clamping and Soft Switching,” IEEE Trans. Circuits Syst. I, Vol. 47, pp. 350356 (2000). doi: 10. 1109/81.841917
- [35] Matsui, K., Yamamoto, I., Hirose, S., Ando, K. and Kobayashi, T., “Utility-Interactive Photovoltaic Power Conditioning Systems with Forward Converter for Domestic Applications,” Proc. IEEElect. Power Applicat., Vol. 147, No. 3, pp. 199205 (2000). doi: 10.1049/ipepa:20000374
- [36] Buso, S., Spiazzi, G. and Tagliavia, D., “Simplified Control Technique for High-power-factor Flyback Cuk and Sepic Rectifiers Operating in CCM,” IEEE Trans. Ind. Applicat., Vol. 36, pp. 14131418 (2000). doi: 10. 1109/28.871291
- [37] Anderson, G. K. and Blaabjerg, F., “Current Programmed Control of a Single Phase Two-switch Buckboost Power Factor Correction Circuit,” Proc. IEEE APEC’01, pp. 350356 (2001). doi: 10.1109/APEC. 2001.911671
- [38] Chen, J., Maksimovic, D. and Erickson, R., “A New Low-stress Buck-boost Converter for Universal-input PFC Applications,” Proc. IEEE APEC’01, pp. 343 349 (2001).
- [39] Amaro, N. and Ceballos, J. M., “A Fast Algorithm for Initial Design of HTS Coils for SMES Applications,” IEEE Transactions on Applied Superconductivity, Vol. 23, No. 3 (2013). doi: 10.1109/TASC.2012.2231912
- [40] Chen, X. Y. and Jin, J. X., “Development of SMES Technology and its Applications in Power Grid,” Proc. Int. Conf. Appl. Supercond. Electromagn. Dev., pp. 260269 (2011). doi: 10.1109/ASEMD.2011.6145115
- [41] Singh, B., Al-Haddad, K. and Chandra, A., “A Review of Active Filters for Power Quality Improvement,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 5 (1999). doi: 10.1109/41.793345
- [42] Singh, B., Al-Haddad, K. and Chandra, A., “A Review of Active Filters for Power Quality Improvement,” IEEE Trans. Ind. Electron., Vol. 46, No. 5, pp. 960 971 (2012). doi: 10.1109/41.793345
- [43] Active Filters: Technical Document, 2100/1100 Series, Mitsubishi Electric Corp., Tokyo, Japan, pp. 1 36 (1989).
- [44] Kikuchi, A. H., “Active Power Filters,” in Toshiba GTR Module (IGBT) Application Notes, Toshiba Corp., Tokyo, Japan, pp. 4445 (1992).
- [45] Gyugyi, L. and Strycula, E., “Active AC Power Filters,” in Conf. Rec. IEEE-IAS Annu. Meeting, pp. 529535 (1976).
- [46] Inventor: KIM, Seon Ho Daejeon Metropolitan City 301-030 (KR), Device For Improving Power Quality, European Patent Application Number: 11809896.1, Date of Filing: 22.07.2011.
- [47] US Patent N0.: US 6,615,147 B1, Date of Patent: Sep. 2, Inventors: Rene T. J. Onker, British Columbia, Invention: Revenue Meter with Power Quality Features (2003).
- [48] US Patent No.: US 8,326,576 B2, Date of Patent: Dec. 4, Inventor: Man-0n Pun, Cambridge, MA (U S), Invention: Detecting Power Quality Events in Power Distribution Networks (2012).
- [49] US Patent No.: WO 2011124223 A3, Date of Patent: Nov 29, Inventor(s): Lucian Asiminoaei, Sergej Kalaschnikow, Invention: Power Quality Improvement by Active Filter (2012).
- [50] Revenue Meter with Power Quality Features, Patent N0.: US 6,615,147 B1, Date of Patent: Sep. 2, Inventor: Rene T. J. Onker, British Columbia (2003).
- [51] Routimo, M., Salo, M. and Tuusa, H., “Improving the Active Power Filter Performance with a Prediction Based Reference Generation,” Nordic Workshop on Power and Industrial Electronics, Norpie (2004).
- [52] IEEE Standard 446-1987, “IEEE Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications,” (IEEE Orange Book). doi: 10.1049/pe:19890012
- [53] IEEE Std 1250-1995, “IEEE Guide for Service to Equipment Sensitive to Momentary Voltage Disturbances,” Art 5.1.1, Computers.
- [54] IEEE, “IEEE Guide for Service to Equipment Sensitive to Momentary Voltage Disturbances,” IEEE Std. 12501995.
- [55] IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems, 1421991 (1992). doi: 10.1049/pe:19890012