Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Chien-Hsing Chou This email address is being protected from spambots. You need JavaScript enabled to view it.1, Yu-Xiang Zhao2 and Hsien-Pang Tai1

1Department of Electrical Engineering, Tamkang University, Tamsui, Taiwan 251, R.O.C.
2Department of Computer Science & Information Engineering, National Quemoy University, Quemoy, Taiwan 892, R.O.C.


 

Received: November 3, 2014
Accepted: April 16, 2015
Publication Date: June 1, 2015

Download Citation: ||https://doi.org/10.6180/jase.2015.18.2.02  


ABSTRACT


This paper proposes an image-preprocessing method combined with a fuzzy clustering algorithm and new validity measure to detect the vanishing point in an image. The proposed method segments the object in an image by using the clustering algorithm and then extracts critical vanishing lines. By examining the intersection of the vanishing lines, the vanishing point is located. To locate the vanishing point accurately, the initial cluster number of the fuzzy clustering algorithm should be provided correctly. Therefore, the study proposes a new clustering validity measure, the area measure, to estimate the initial cluster number according to the information of cluster areas. Experimental results on 29 images show that the proposed preprocessing method and validity measure can accurately identify the location of the vanishing point and vanishing lines. In addition, compared with several validity measures, the new validity measure achieves satisfactory experimental results and outperforms six other validity measures.


Keywords: Fuzzy Clustering, Clustering Validity, Vanishing Point, Vanishing Line, Depth Map


REFERENCES


  1.  [1] Saxena, A., Chung, S. H. and Ng, A. Y., “3-D Depth Reconstruction from a Single Still Image,” International Journal of Computer Vision, Vol. 76, No. 1, pp. 5369 (2008). doi: 10.1007/s11263-007-0071-y
  2. [2] Saxena, A., Chung, S. H. and Ng, A. Y., “Make3D: Learning 3D Scene Structure from a Single Still Image, “ IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 31, No. 5, pp. 824840 (2009). doi: 10.1109/TPAMI.2008.132
  3. [3] Saxena, A., Chung, S. H. and Ng, A. Y., “Learning Depth from Single Monocular Images,” Neural Information Processing System, Vol. 18 (2005).
  4. [4] Michels, J., Saxena, A. and Ng, A. Y., “High Speed Obstacle Avoidance using Monocular Vision and Reinforcement Learning,” Proceeding of 22nd Internal conference of Machine Learning (2005). doi: 10.1145/ 1102351.1102426
  5. [5] Fehn, C., “Depth-Image-Based Rendering (DIBR), Compression and Transmission for a New Approach on 3D-TV,” Proceedings of SPIE Stereoscopic Displays and Virtual Reality Systems XI, Vol. 5291, pp. 93104 (2004). doi: 10.1117/12.524762
  6. [6] Battiato, S., Capra, A., Curti, S. and Cascia, M. L., “3D Stereoscopic Image Pairs by Depth-Map Generation,” Proceedings of the 3D Data Processing, Visualization, and Transmission, pp. 124131 (2004). doi: 10.1109/ TDPVT.2004.1335185
  7. [7] Cantoni, V., Lombardi, L., Porta, M. and Sicari, N., “Vanishing Point Detection: Representation Analysis and New Approaches,” Proceeding of the 11th International Conference on Image Analysis and Processing, pp. 9094 (2001). doi: 10.1109/ICIAP.2001. 956990
  8. [8] Bajcsy, R. and Lieberman, L., “Texture Gradient as a Depth Cue,” Computer Graphics and Image Processing, Vol. 5, No. 1, pp. 5267 (1976). doi: 10.1016/ S0146-664X(76)80005-6
  9. [9] Gini, G. and Marchi, A., “Indoor Robot Navigation with Single Camera Vision,” Second International Workshop on Pattern Recognition in Information Systems, pp. 6776 (2002).
  10. [10] Shao, M., Simchony, T. and Chellappa, R., “New Algorithms from Reconstruction of a 3-d Depth Map from One or More Images,” IEEE Conference on CVPR, pp. 530535 (1988). doi: 10.1109/CVPR.1988. 196286
  11. [11] Loomis, J. M., “Looking Down is Looking Up,” Nature News and Views, Vol. 414, pp. 155156 (2001). doi: 10.1038/35102648
  12. [12] Wu, B., Ooi, T. L. and He, Z. J., “Perceiving Distance Accurately by a Directional Process of Integrating Ground Information,” Letters to Nature, Vol. 428, pp. 7377 (2004). doi: 10.1038/nature02350
  13. [13] Bülthoff, I., Bülthoff, H. and Sinha, P., “Top-down Influences on Stereoscopic Depth-Perception,” Nature Neuroscience, Vol. 1, pp. 254257 (1998). doi: 10.1038/ 699
  14. [14] Shi, J. and Malik, J., “Normalized Cuts and Image Segmentation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8, pp. 888905 (2000). doi: 10.1109/34.868688
  15. [15] Chen, Q. and He, C., “Integrating Clustering with Level Set Method for Piecewise Constant Mumford-Shah Model,” EURASIP Journal on Image and Video Processing, p. 1 (2014). doi: 10.1186/1687-5281- 2014-1
  16. [16] Harrabi, R. and Braiek, E. B.,” Color Image Segmentation using Multi-level Thresholding Approach and Data Fusion Techniques: Application in the Breast Cancer Cells Images,” EURASIP Journal on Image and Video Processing 2012, p. 11 (2012). doi: 10.1186/ 1687-5281-2012-11
  17. [17] Masoud, H., Jalili, S. and Hasheminejad, S. M. H., “Dynamic Clustering using Combinatorial Particle Swarm Optimization,” Applied Intelligence, pp. 126 (2012). doi: 10.1007/s10489-012-0373-9
  18. [18] Pappas, T. N., “An Adaptive Clustering Algorithm for Image Segmentation,” IEEE Trans. on Signal Processing, Vol. 40, No. 4, pp. 901914 (1992). doi: 10. 1109/78.127962
  19. [19] Mújica-Vargas, D., Gallegos-Funes, F. J., Rosales-Silva, A. J. and de Jesús Rubio, J., “Robust C-prototypes Algorithms for Color Image Segmentation,” EURASIP Journal on Image and Video Processing, p. 63 (2013). doi: 10.1186/1687-5281-2013-63
  20. [20] Ray, S. and Turi, R. H., “Determination of Number of Clusters in K-means Clustering and Application in Colour Image Segmentation,” International Conference on Advances in Pattern Recognition and Digital Techniques, pp. 2729 (1999).
  21. [21] Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York (1981).
  22. [22] Dunn, J. C., “Well Separated Clusters and Optimal Fuzzy Partitions,” Journal Cybern., Vol. 4, pp. 95104 (1974). doi: 10.1080/01969727408546059
  23. [23] Bezdek, J. C., “Numerical Taxonomy with Fuzzy Sets,” J. Math. Biol., Vol. 1, pp. 5771 (1974). doi: 10. 1007/BF02339490
  24. [24] Xie, X. L. and Beni, G., “A Validity Measure for fuzzy Clustering,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 13, No. 8, pp. 841847 (1991). doi: 10.1109/34.85677
  25. [25] Davies, D. L. and Bouldin, D. W., “A Cluster Separation Measure,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 1, No. 4, pp. 224227 (1979). doi: 10.1109/TPAMI.1979.4766909
  26. [26] Gath, I. and Geva, A. B., “Unsupervised Optimal Fuzzy Clustering,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 11, pp. 773781 (1989). doi: 10.1109/34.192473
  27. [27] Chou, C. H., Su, M. C. and Lai, E., “A New Cluster Validity Measure and its Application to Image Compression,” Pattern Analysis and Applications, Vol. 7, No. 2, pp. 205220 (2004). doi: 10.1007/s10044-004-02 18-1
  28. [28] Wu, H.-M., “On Biological Validity Indices for Soft Clustering Algorithms for Gene Expression Data,” Computational Statistics & Data Analysis, Vol. 55, No. 5, pp. 19691979 (2011). doi: 10.1016/j.csda.2010. 12.003
  29. [29] Saha, S. and Bandyopadhyay, S., “Automatic MR Brain Image Segmentation using a Multiseed Based Multiobjective Clustering Approach,” Vol. 35, No. 3, pp. 411427 (2011). doi: 10.1007/s10489-010-0231-6
  30. [30] Some Images are Available on the Following Web site, http://travel.network.com.tw/scenery/
  31. [31] Cheng, F.-H. and Yang, J.-C., “Depth Estimation from Single Image Based on Vanishing Point,” Journal of Information Technology and Applications, Vol. 1, No. 3, pp. 229235 (2006).