Hsuan Chang This email address is being protected from spambots. You need JavaScript enabled to view it.1, Yih-Hung Chen1, Yun-Tsz Chen1 and Chii-Dong Ho1

1Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taiwan 251, R.O.C.


 

Received: December 18, 2017
Accepted: March 9, 2018
Publication Date: September 1, 2018

Download Citation: ||https://doi.org/10.6180/jase.201809_21(3).0020  

ABSTRACT


Autothermal reforming (ATR) of methane, which supplies the heat for endothermic steam reforming by internal combustion of methane, is an important process for synthetic gas production. The axial-distributed feeding of oxygen via a packed bed inert membrane reactor (MR) can reduce the peak temperature and improve the reactor performance. A modified MR, called mixed membrane reactor(MMR), combines permeable membrane tube wall and non-permeable tube wall provides extra degrees of freedom for reactor design and operation. For MR and MMR, this study presents the ternary-objective optimization analysis for maximizing hydrogen production rate, non-combustion selectivity and conversion of methane, using a 1D pseudo-homogeneous reactor model and the NSGA-II algorithm. Compared to MR, MMR can be operated under significantly higher oxygen permeationfluxwithoutviolatingthemaximumtemperatureconstraint.Thenon-combustion selectivity and conversion of methane of MR and MMR are close, however, the hydrogen production rate of MMR can be as high as 200% of MR.


Keywords: Methane Reforming, Membrane Reactor, Mixed Membrane Reactor, Multi-objective Optimization


REFERENCES


  1. [1] Ulber, D., “A Guide to Methane Reforming,” Chemical Engineering, January, pp. 4046 (2015).
  2. [2] Rice,S. F. and Mann, D. P., Autothermal Reforming of Natural Gas to Synthesis Gas,SAND2007-2331, Sandia National Laboratories, U.S. Department of Commerce(2007).
  3. [3] Marcano, J. G. S. and Tsotsis, T. T., Catalytic Membranes and Membrane Reactors, Wiley-VCH Verlag GmbH, WeinheimGermany(2002).
  4. [4] Coronas,J.andSantamaría,J.,“CatalyticReactorsBased on Porous Ceramic Membranes,” Catalysis Today, Vol. 51, pp. 377389 (1999). doi: 10.1016/S0920-5861 (99)00090-5
  5. [5] Rodríguez, M. L., Ardissone, D. E., Opez, E. L., Pedernera, M. N. and Borio, D. O., “Reactor Designs for Ethylene Production via Ethane Oxidative Dehydrogenation: Comparison of Performance,” Industrial and Engineering Chemistry Research, Vol. 50, pp. 26902697 (2011). doi: 10.1021/ie100738q
  6. [6] Rodríguez, M. L., Pedernera, M. N. and Borio, D. O., “Two Dimensional Modeling of a Membrane Reactor for ATR of Methane,” Catalysis Today, Vol. 193, pp. 137144 (2012). doi: 10.1016/j.cattod.2012.04.010
  7. [7] Coronas,J.,Menéndez,M.andSantamaría,J.,“Use of a Ceramic Membrane Reactor for the Oxidative Dehydrogenation of Ethane to Ethylene and Higher Hydrocarbons,” Industrial and Engineering Chemistry Research, Vol. 34, pp. 42294234 (1995). doi: 10.1021/ ie00039a011
  8. [8] Ávila-Neto, C. N., Dantas, S. C., Silva, F. A., Franco, T. V., Romanielo, L. L., Hori, C. E. and Assis, A. J., “Hydrogen Production fromMethane Reforming: ThermodynamicAssessmentandAutothermalReactorDesign,” Journal of Natural Gas Science and Engineering, Vol. 1, pp. 205215 (2009). doi: 10.1016/j.jngse. 2009.12.003
  9. [9] Sinaei Nobandegani, M., Sardashti Birjandi, M. R., Darbandi, T., Khalilipour, M. M., Shahraki, F. and Mohebbi-Kalhori, D., “An Industrial Steam Methane Reformer Optimization Using Response Surface Methodology,” Journal of Natural Gas Science and Engineering, Vol. 36, pp. 540549 (2016). doi: 10.1016/j. jngse.2016.10.031
  10. [10] Shahhosseini, H.R.,Farsi,M.and Eini,S.,“Multi-objective Optimization of Industrial Membrane SMR to Produce Syngas for Fischer-Tropsch Production Using NSGA-II and Decision Makings,” Journal of Natural Gas Science and Engineering, Vol. 32, pp. 222 238 (2016). doi: 10.1016/j.jngse.2016.04.005
  11. [11] Deb, K., Patap, A., Agarwal, S. and Meyarivan, T., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, pp. 182197 (2002). doi: 10.1109/ 4235.996017
  12. [12] De Groote, A. M. and Froment, G. F., “Simulation of the Catalytic Partial Oxidation of Methane to Synthesis Gas,” Applied Catalysis A: General, Vol. 138, pp. 245264 (1996).doi:10.1016/0926-860X(95)00299-5
  13. [13] Ergun, S., “Fluid Flow through Packed Columns,” Chem. Eng. Prog., Vol. 48, pp. 8994 (1952).
  14. [14] Xu,J.andFroment,G.F.,“MethaneSteamReforming, MethanationandWater-gasShift:I.IntrinsicKinetics,” AIChE Journal, Vol. 35, pp. 8896 (1989). doi: 10. 1002/aic.690350109
  15. [15] Mallada, R., Pedernera, M., Menéndez, M. and Santamaria, J., “Synthesis of Maleic Anhydride in an InertMembraneReactor.EffectofReactorConfiguration,” Industrial and Engineering Chemistry Research, Vol. 39, pp. 620625 (2000). doi: 10.1021/ie9905310
  16. [16] Pedernera, M., Mallada, R., Menéndez, M. and Santamaria, J., “Simulation of an Inert Membrane Reactor for the Synthesis of Maleic Anhydride,” AIChE Journal,Vol.46,pp.24892498(2000). doi:10.1002/ aic.690461215
  17. [17] Rodríguez, M. L., Ardissone, D. E., Lemonidou, A. A., Heracleous, E., López, E., Pedernera, M. N. and Borio, D. O., “Simulation of a Membrane Reactor for the Catalytic Oxidehydrogenation of Ethane,” Industrial and Engineering Chemistry Research, Vol. 48, pp. 10901095 (2009). doi: 10.1021/ie800564v
  18. [18] Froment, G. F. and Bischoff, K. B., Chemical Reactor Analysis and Design, Wiley, New York, USA(1990).