- [1] J. Wang, L. Yao, K. Liu, F. Cheng, J. Xu, and J. Wang, (2024) “Dynamic network partitioning method of distribution networks considering regional autonomy" Power Syst. Technol:
- [2] Z. Cheng, M. Min, M. Liwang, L. Huang, and Z. Gao, (2021) “Multiagent DDPG-based joint task partitioning and power control in fog computing networks" IEEE Internet of Things Journal 9(1): 104–116. DOI: https: //doi.org/10.1109/JIOT.2021.3091508.
- [3] L. Ma, L. Wang, and Z. Liu, (2021) “Topology identification of distribution networks using a split-EM based data-driven approach" IEEE Transactions on Power Systems 37(3): 2019–2031. DOI: https: //doi.org/10.1109/TPWRS.2021.3119649.
- [4] D. Deka, V. Kekatos, and G. Cavraro, (2023) “Learning distribution grid topologies: A tutorial" IEEE Trans actions on Smart Grid 15(1): 999–1013. DOI: https: //doi.org/10.1109/TSG.2023.3271902.
- [5] X. Liang, M. A. Saaklayen, M. A. Igder, S. M. R. H. Shawon,S.O.Faried,andM.Janbakhsh,(2022)“Planning and service restoration through microgrid formation and soft open points for distribution network modernization: A review" IEEE Transactions on Industry Applications 58(2): 1843–1857. DOI: https: //doi.org/10.1109/TIA.2022.3146103.
- [6] T.M.Aljohani,A.Saad,andO.A.Mohammed,(2021) “Two-stage optimization strategy for solving the VVO problem considering high penetration of plug-in electric vehicles to unbalanced distribution networks" IEEE Trans actions on Industry Applications 57(4): 3425–3440. DOI: https: //doi.org/10.1109/TIA.2021.3077547.
- [7] S. Mondal, S. D. Manasi, K. Kunal, Z. Zeng, S. S. Sapatnekar, et al., (2022) “A unified engine for accelerating GNN weighting/aggregation operations, with efficient load balancing and graph-specific caching" IEEE Trans actions on Computer-Aided Design of Integrated Circuits and Systems 42(12): 4844–4857. DOI: https: //doi.org/10.1109/TCAD.2022.3232467.
- [8] C. Xue, L. Lin, Y. Huang, and X. Wang, (2024) “Graph neural network-based anomaly detection for human cyber physical systems" Journal of the Chinese Institute of Engineers 47(8): 977–984. DOI: https: //doi.org/10.1080/02533839.2024.2407294.
- [9] Y. Pei, J. Yang, J. Wang, P. Xu, T. Zhou, and F. Wu, (2023) “An emergency control strategy for undervoltage load shedding of power system: A graph deep reinforcement learning method" IET Generation, Transmission &Distribution 17(9): 2130–2141. DOI: https: //doi.org/10.1049/gtd2.12795.
- [10] X. Gu, T. Liu, S. Li, X. Yang, and X. Cao, (2023) “Identification of vulnerable nodes in power grids based on graph deep learning algorithm" IET generation, trans mission & distribution 17(9): 2015–2027. DOI: https: //doi.org/10.1049/gtd2.12783.
- [11] P. Li, Z. Zhong, Y. Zhao, C. Shao, Y. Sui, and R. Sun, (2025) “Power-GNN: a graph over-sampling method to mitigate power-law distribution in graph neural net works" Applied Intelligence 55(7): 1–16. DOI: https: //doi.org/10.1007/s10489-025-06421-5.
- [12] L. Waikhom andR. Patgiri, (2023) “A survey of graph neural networks in various learning paradigms: methods, applications, and challenges" Artificial Intelligence Re view56(7): 6295–6364. DOI: https: //doi.org/10.1007/s10462-022-10321-2.
- [13] B. Huang andJ. Wang, (2022) “Applications of physics informed neural networks in power systems-a review" IEEE Transactions on Power Systems 38(1): 572–588. DOI: 10.1109/TPWRS.2022.3162473.
- [14] X. Zhang, Y. Liu, J. Duan, G. Qiu, T. Liu, and J. Liu, (2021) “DDPG-based multi-agent framework for SVC tuning in urban power grid with renewable energy re sources" IEEE Transactions on Power Systems 36(6): 5465–5475. DOI: https: //doi.org/10.1109/TPWRS.2021.3081159.
- [15] Y.Huo,P.Li,H.Ji,J.Yan,G.Song,J.Wu,andC.Wang, (2021) “Data-driven adaptive operation of soft open points in active distribution networks" IEEE Transactions on Industrial Informatics 17(12): 8230–8242. DOI: https: //doi.org/10.1109/TII.2021.3064370.
- [16] F. Yan, M. Zhang, and Z. Shi, (2021) “Dynamic partitioning of urban traffic network sub-regions with spatiotemporal evolution of traffic flow" Nonlinear Dynamics 105(1): 911–929. DOI: https: //doi.org/10.1007/s11071-021-06448-6.
- [17] Y. Fang, X. Li, R. Ye, X. Tan, P. Zhao, and M. Wang, (2023) “Relation-aware graph convolutional networks for multi-relational network alignment" ACM Transactions on Intelligent Systems and Technology 14(2): 1–23. DOI: https: //doi.org/10.1145/3579827.
- [18] W. Li, H. Chen, G. Wang, L. Song, Y. Xia, Z. Wang, and K. Jia. “Many-Objective Optimization Evolutionary Algorithm Based on Dynamic Region Par titioning”. In: 2024 4th International Conference on Consumer Electronics and Computer Engineering (ICCECE). IEEE. 2024, 59–63. DOI: https: //doi.org/10.1109/ICCECE61317.2024.10504213.
- [19] X. Wang, D. Bo, C. Shi, S. Fan, Y. Ye, and P. S. Yu, (2022) “A survey on heterogeneous graph embedding: methods, techniques, applications and sources" IEEE transactions on big data 9(2): 415–436. DOI: https: //doi.org/10.1109/TBDATA.2022.3177455.
- [20] Y.Chen,F.Chen,Z.Wu,Z.Chen,Z.Cai,Y.Tan,andS. Wang,(2025)“Heterogeneousgraphembeddingwithdual edge differentiation" Neural Networks 183: 106965. DOI: https: //doi.org/10.1016/j.neunet.2024.106965.
- [21] M. Anitha and K. Sherly. “Customer Churn Prediction Using GraphSAGE Model with Degree Based Sampling and Max Pooling Aggregation”. In: Inter national Conference on Computing, Communication, Security and Intelligent Systems. Springer. 2024, 103–117.
- [22] P.SinghandB.Raman.“GraphNeuralNetworks:Ex tending Deep Learning to Graphs”. In: Deep Learning Through the Prism of Tensors. Springer, 2025, 423–482.
- [23] A. Inaolaji, A. Savasci, S. Paudyal, and S. Ka malasadan, (2023) “Distributed optimal power flow in unbalanced distribution grids with non-ideal communication" IEEE Transactions on Industry Applications 59(5): 5385–5397. DOI: https: //doi.org/10.1109/TIA.2023.3283236.
- [24] T. ZhaoandJ. Wang, (2021) “Learning sequential distribution system restoration via graph-reinforcement learning" IEEE Transactions on Power Systems 37(2): 1601–1611. DOI: https: //doi.org/10.1109/TPWRS.2021.3102870.
- [25] T. N. Nguyen, B.-H. Liu, N. P. Nguyen, B. Dumba, and J.-T. Chou, (2021) “Smart grid vulnerability and defense analysis under cascading failure attacks" IEEE Transactions on Power Delivery 36(4): 2264–2273. DOI: https: //doi.org/10.1109/TPWRD.2021.3061358.
- [26] S. Xiao, H. Lin, J. Wang, X. Qin, and S. Wang, (2024) “Multi-Relation Augmentation for Graph Neural Net works" IEEE Transactions on Emerging Topics in Computational Intelligence 8(5): 3614–3627. DOI: https: //doi.org/10.1109/TETCI.2024.3371214.
- [27] W. Ai, Y. Liu, C. Wei, T. Meng, H. Shao, Z. He, and K. Li, (2025) “MFLM-GCN: Multi-relation fusion and latent-relation mining graph convolutional network for entity alignment" Knowledge-Based Systems: 113974. DOI: https: //doi.org/10.1016/j.knosys.2025.113974.
- [28] T. Tao, Q. Wang, Y. Ruan, X. Li, and X. Wang, (2023) “Graph Embedding with Similarity Metric Learning" Symmetry 15(8): 1618. DOI: https: //doi.org/10.3390/sym15081618.