- [1] J. Just, (2024) “Natural language processing for innovation search–Reviewing an emerging non-human innovation intermediary" Technovation 129: 102883. DOI: 10.1016/j.technovation.2023.102883.
- [2] J. Yu, L. Zhao, S. Yin, and M. Ivanovi´c, (2024) “News recommendation model based on encoder graph neural net work and bat optimization in online social multimedia art education" Computer Science and Information Systems 21(3): 989–1012. DOI: 10.2298/CSIS231225025Y.
- [3] H. N. Chau, T. D. Bui, H. B. Nguyen, T. T. H. Duong, and Q. C. Nguyen, (2024) “A novel approach to multi channel speech enhancement based on graph neural net works" IEEE/ACM Transactions on Audio, Speech, and Language Processing 32: 1133–1144. DOI: 10.1109/TASLP.2024.3352259.
- [4] S. Chopra, P. Agarwal, J. Ahmed, S. S. Biswas, and A. J. Obaid, (2024) “Roberta and BERT: Revolutionizing Mental Healthcare Through Natural Language" SN Computer Science 5(7): 889. DOI: 10.1007/s42979-024-03202-8.
- [5] Y. Yuan, Q. Zhang, X. Zhou, and M. Gao, (2025) “A Chinese named entity recognition model: integrating la bel knowledge and lexicon information" International Journal of Machine Learning and Cybernetics 16(1): 253–266. DOI: 10.1007/s13042-024-02207-2.
- [6] M. A. Metu, N. Akhter, S. Nasrin, T. Anzum, A. Khatun, and R. Mazumder, (2024) “Hybrid SVM Bidirectional Long Short-Term Memory Model for Fine Grained Software Requirement Classification" Journal of Advances in Information Technology 15(8): DOI: 10.12720/jait.15.8.914-922.
- [7] S. Baik, M. Choi, J. Choi, H. Kim, and K. M. Lee, (2023) “Learning to learn task-adaptive hyperparameters for few-shot learning" IEEE Transactions on Pattern Analysis and Machine Intelligence 46(3): 1441–1454. DOI: 10.1109/TPAMI.2023.3261387.
- [8] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu. “An end to-end spatio-temporal attention model for human action recognition from skeleton data”. In: Proceedings of the AAAI conference on artificial intelligence. 31. 1. 2017. DOI: 10.1609/aaai.v31i1.11212.
- [9] Z. Ji, X. Chai, Y. Yu, Y. Pang, and Z. Zhang, (2020) “Improved prototypical networks for few-shot learning" Pattern Recognition Letters 140: 81–87. DOI: 10.1016/j.patrec.2020.07.015.
- [10] Z.Chen,Y.Wang,J.Wu,C.Deng,andW.Jiang,(2022) “Wideresidual relation network-based intelligent fault diagnosis of rotating machines with small samples" Sensors 22(11): 4161. DOI: 10.3390/s22114161.
- [11] Y. Jiang and S. Yin, (2023) “Heterogenous-view occluded expression data recognition based on cycle-consistent adversarial network and K-SVD dictionary learning under intelligent cooperative robot environment" Computer Science and Information Systems 20(4): 1869–1883. DOI: 10.2298/CSIS221228034J.
- [12] W. Zhang and J. Wang, (2024) “English text sentiment analysis network based on CNN and U-Net" IFS/ACM Transactions on Machine Learning 1(1): 13–18. DOI: 10.70891/JSE.2024.100009.
- [13] H. Mohammadian, A. A. Ghorbani, and A. H. Lashkari, (2023) “A gradient-based approach for adversarial attack on deep learning-based network intrusion detection systems" Applied Soft Computing 137: 110173. DOI: 10.1016/j.asoc.2023.110173.
- [14] M. Park, T. Park, S. Park, S. J. Yoon, S. H. Koo, and Y.-L. Park, (2024) “Stretchable glove for accurate and robust hand pose reconstruction based on comprehensive motion data" Nature communications 15(1): 5821. DOI: 10.1038/s41467-024-50101-w.
- [15] L. Zhang, M. Fu, and Y. Wang. “SProtoNet: self supervised ProtoNet for plant leaf disease few-shot classification”. In: Fourth International Conference on Computer Vision and Data Mining (ICCVDM 2023). 13063. SPIE. 2024, 138–141. DOI: 10.1117/12.3021300.
- [16] D. Kang, H. Kwon, J. Min, and M. Cho. “Relational embedding for few-shot classification”. In: Proceedings of the IEEE/CVF international conference on computer vision. 2021, 8822–8833. DOI: 10.1109/ICCV48922.2021.00870.
- [17] X. Li, Y. Li, J. Wang, C. Chen, L. Yang, and Z. Zheng, (2022) “Decentralized federated meta-learning framework for few-shot multitask learning" International Journal of Intelligent Systems 37(11): 8490–8522. DOI: 10.1002/int.22951.
- [18] T. Wang, H. Xu, and S. Zhu. “Few-shot text classification with prototype network based on distribution propagation graph neural network”. In: International Conference on Cyber Security, Artificial Intelligence, and Digital Economy (CSAIDE 2023). 12718. SPIE. 2023, 125–131. DOI: 10.1117/12.2681670.
- [19] Y. Shao, W. Wu, X. You, C. Gao, and N. Sang, (2022) “Improving the generalization of MAML in few-shot classification via bi-level constraint" IEEE Transactions on Circuits and Systems for Video Technology 33(7): 3284–3295. DOI: 10.1109/TCSVT.2022.3232717.
- [20] D. Vetter, M. Ahsan, D. Delicado, T. A. Neubauer, T. Wilke, and G. Roig, (2024) “Classification of freshwater snails of the genus Radomaniola with multimodal triplet networks" arXiv preprint arXiv:2407.20013: DOI: 10. 48550/arXiv.2407.20013.
- [21] Y. Zhang and Z. Kang. “Tpn: Transferable proto learning network towards few-shot document-level relation extraction”. In: 2024 International Joint Conference on Neural Networks (IJCNN). IEEE. 2024, 1–9. DOI: 10.1109/IJCNN60899.2024.10650913.
- [22] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle, and R. S. Zemel, (2018) “Meta-learning for semi-supervised few-shot classification" arXiv preprint arXiv:1803.00676: DOI: 10.48550/arXiv.1803.00676.
- [23] Q. Xu, (2025) “Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries" Systems and Soft Computing 7: 200186. DOI: 10.1016/j.sasc.2025. 200186.
- [24] L. Zhang, Q. Lin, F. Meng, S. Liang, J. Lu, S. Liu, K. Chen, and Y. Zhan, (2025) “Leveraging Contrastive Semantics and Language Adaptation for Robust Financial Text Classification Across Languages" Computers 14(8): 338. DOI: 10.3390/computers14080338.