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The parafoil system is nonlinear and complex with a large time delay. This makes it challenging for traditional
control methods to control the parafoil system effectively. However, the Markov property of reinforcement
learning offers a new possibility for controlling the parafoil system. Therefore, this paper employs the deep
reinforcement learning (DRL) method to train a neural network controller for controlling the parafoil system,
based on a modified deterministic version of the distributional soft actor-critic with three refinements (DSAC-
T) algorithm and it is named MC-DSAC-T. The controller of the parafoil system is denoted as a multilayer
perceptron (MLP) and the objective function of the policy introduces cumulative discounted rewards of a single
episode to improve the stability of the iterative update of the policy, a Monte Carlo (MC) thinking. In addition,
wind disturbances are introduced during training to enhance the robustness of the neural network controller.
First, a nine-degree-of-freedom (nine-DOF) dynamic model of the parafoil system is developed. Secondly, the
network structure of the MC-DSAC-T algorithm and the process of updating the network using sampling data
were introduced. Finally, the control effects of the neural network controller trained by the proposed method
were compared with those of the proportion integration differentiation (PID) controller in a wind environment.
While tracking 100 randomly selected trajectory segments, the results show that the neural network controller is
superior to the PID controller in distance control accuracy, which proves that the neural network controller can
control the parafoil system to perform the tracking task and verify the effectiveness of the proposed method.
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1. Introduction

The parafoil is a type of flexible-wing unmanned aerial ve-
hicle (UAV) with excellent performance, developed based
on parachute technology. The parafoil system (unpowered)
primarily consists of a parafoil canopy, control lines, sus-
pension lines, a controller, and a payload. The airborne
flight and precise airdrop are achieved by manipulating
the left and right control lines of the parafoil system, which
results in aerodynamic changes. Because of the good glide
performance, maneuverability, and strong carrying capac-
ity of the parafoil, it has broad application prospects in

aerospace, military, and civil fields [1, 2]. However, the
parafoil system is a complex nonlinear system with strong
coupling and significant time lags. This makes controlling
it challenging when faced with uncertainties and distur-
bances such as initial state errors, aerodynamic errors, and
wind disturbances. As a result, studies in parafoil system
control have focused on developing controllers that can
control the system to effectively track a predetermined tar-
get trajectory - also known as trajectory tracking control.
Since real-world flight control experiments are expensive
and difficult to conduct, many studies on the parafoil sys-
tem trajectory tracking control rely on computer simula-
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tion [3]. Studies have investigated dynamic models of the
parafoil system with varying degrees of freedom, such as
the three and four-DOF [4], six-DOF [5], eight-DOF [6], and
nine-DOF [7-9]. The nine-DOF model takes into account
the translation and rotation of the parafoil system in three-
dimensional space, as well as the rotation of the parafoil
relative to the payload. Control methods of the parafoil
system may be divided into the following two classes: tra-
ditional control methods and intelligent control methods.
The former uses manual adjustment control parameters of
the controller, while the latter intelligent control method
uses some optimization algorithms to find the optimal con-
trol parameters.

In terms of traditional control methods, some works
have focused on improving the disturbance rejection and
control accuracy of the parafoil system controllers. N.
Slegers et al. [10] used model predictive control (MPC)
to control the parafoil system of a six-DOF. They utilized
the current state of the system and control inputs to pre-
dict future states and determine the current control action.
J. Tao et al. [11]combined ESO and nonlinear state error
feedback (NLSEF) control laws to design the horizontal
and vertical trajectory tracking active disturbance rejection
controllers of the powered parafoil system, respectively. It
overcomes the influence of model uncertainty and external
disturbance and has stronger robustness and wind resis-
tance than the PID controller. Subsequently, J. Tao et al. [12]
used computational fluid dynamics (CFD) technology to
analyze the aerodynamic performance of the parafoil sys-
tem in the wind environment and established an eight-DOF
dynamic model of the parafoil system under wind condi-
tions. At the same time, an active disturbance rejection
control (ADRC) method is proposed for horizontal trajec-
tory tracking control of the parafoil system. Y. Zheng et al.
[13] introduced the reduced-order ESO for sideslip angle es-
timation, then designed a new trajectory tracking guidance
law based on the estimated sideslip angle, and used two
LADRC controllers to realize three-dimensional trajectory
tracking of the parafoil system. To consider the sideslip
angle and at the same time take into account the path track-
ing control accuracy, W. He et al. [14] propose an improved
ADRC method based on surge-guided line-of-sight (SG-
LOS) guidance law and the multi-strategy marine predator
algorithm (MSMPA) optimization, which improves the sta-
bility by pre-smoothing sideslip angles as well as abrupt
yaw angle fluctuations. H. Sun et al. [15] proposed an
improved PID control method combined with a linear ESO
(LESO) to improve the responsiveness of the controller to
system state changes and used an eight-DOF parafoil sys-
tem for simulation, to obtain a better control effect than

the traditional PID controller. To deal with the problems
of nonlinearity, large inertia, and strong disturbances in
the airdrop environment, J. Tao et al. [16] established a
six-DOF dynamic model of the parafoil system in the wind
environment and proposed an autonomous path-following
control method for the parafoil system-based on general-
ized predictive control (GPC). Through online identifica-
tion, the underlying controlled auto-regressive integrated
moving average (CARIMA) model between the motor con-
trol input and the actual output is established. The GPC
strategy is used to calculate the control quantity of the de-
sired heading angle. Compared with the traditional PID
control strategy, this method is better in dynamic perfor-
mance and wind resistance. L. Zhao et al. [17] proposed
a model-independent real-time trajectory control method,
model-free adaptive control (MFAC) method, to solve the
problem that the parafoil system dynamic model is not
accurate enough, which makes the controller obtained by
simulation training unable to be used in practice. Based
on a six-DOF parafoil system, the stability and robustness
of the method are demonstrated both theoretically and
experimentally. The controller obtained by the proposed
method has a smaller standard deviation and overshoot, as
well as a smaller average distance error, than the control
input values of the controllers obtained by the PID and
ADRC methods. Z. Wei et al. [18] proposed a new guid-
ance and control framework based on the dynamic model
of the parafoil system. The advanced-step nonlinear model
predictive control (as-NMPC) controller was introduced to
track the six-DOF trajectory to compensate for wind and
other disturbances. The dynamic model is updated by the
moving horizon model correction method to compensate
for the inaccuracy of the model.

Manual adjustment of control parameters is often ineffi-
cient, and the obtained control parameters are usually not
close to the optimal control parameters. Therefore, some re-
searchers use intelligent algorithms to optimize the control
parameters to get better control parameters. Y.P. Wang et
al. [19] proposed a version of the particle swarm optimiza-
tion (PSO) algorithm with adaptive adjustment of particle
weight and used it to automatically tune PID parameters
to improve the efficiency of PID parameter optimization.
The results show that the adaptive PSO (APSO) method
can solve the problem that PID parameters are difficult to
determine, and have good dynamic and static performance.
H. Jia et al. [20] automatically employed a single neuron to
adjust Linear ADRC (LADRC) parameters. Compared with
the LADRC trajectory tracking method, the single neuron
modified LADRC trajectory tracking control method has
a better tracking effect and stronger disturbance suppres-
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sion ability. Additionally, other studies have utilized DRL
to tune LADRC parameters, such as the DRL algorithms
used, including deep deterministic policy gradient (DDPG)
[21], twin delayed deep deterministic policy gradient (TD3)
[22], and soft actor-critic (SAC) [23], demonstrating success-
ful application in parafoil system control. An integrated
guidance and control algorithm based on a proximal policy
optimization (PPO) algorithm [24] in the DRL was recently
proposed for the parafoil terminal landing problem. The
controller trained by the algorithm can control the parafoil
system to achieve a landing with an average landing error
within a reasonable range and show smooth control output
and real-time control ability.

To further improve the performance of the controller
in controlling the parafoil system to track the target tra-
jectory. The modified DSAC-T algorithm [25] is utilized
in this study to train a neural network trajectory tracking
controller of the parafoil system. Treating the control prob-
lem as a Markov decision process and consider training
as identifying an optimal policy to maximize the expected
value of the cumulative discounted reward. The primary
contributions of this paper are summarized below.

1) A deep reinforcement learning approach was used to
train a neural network trajectory tracking controller for the
parafoil system;

2) The MC thinking was utilized to constrain the policy
iterative updates, enhancing the stability of the training
process;

3) The simulation results validate the effectiveness of the
proposed method under wind disturbances.

2. Methods

2.1. Parafoil System Simulation Model

In this study, the dynamic model of a nine-DOF parafoil
system is used. To facilitate the analysis of the motion
characteristics of the parafoil system, four coordinate sys-
tems are used in the modeling: the inertial earth-constant
coordinate system is denoted as follows O, X, Y, Z; the co-
ordinate system at the joint c is parallel to the inertial earth-
constant coordinate system, denoted as follows O X Y. Z;
The parafoil body-fixed coordinate system is denoted as
OpXyYypZy; the payload body-fixed y coordinate system is
denoted as Oy X}Y;Z;. Where O, and Oy, are the centers
of gravity of the parafoil and the payload respectively and
the subscripts e, p,b,c denote the earth, parafoil, the pay-
load, and joint ¢, respectively. These coordinate systems
are shown in Fig.1.

Parafoil canopy

Y 0. Y,
joinlco‘ ¢
X(/ Z. X
Payload _E\ ‘ z
S0 )
\
\Z,
X,

Fig. 1. Schematic diagram of parafoil system coordinates

2.2. Equations of Motion
2.2.1. Kinematic Equations of Parafoil and Payload

EZ Xe Ue
Ye| = |Yec| = | Vc 1)
| Ze Zc We
ép [T Sg,te,  Cg,te, | [pp
Op| =0 G, =S¢, | |4p )
llJp _0 S% /Cgp C(,bp /Cg}g Tp
¢ [l Spte,  Cote, | [Po
0| =10 Cy S, | | ®)
¥y 10 S¢,/Co, Cp,/Co,] 76

where the trigonometric functions are in shorthand, sina =
Sa,cosa = Cy, tana = ty. (u¢, v, wC)T denotes the velocity
of the parafoil system. (¢,6,9)T denotes three Euler orien-
tation angles. (p,q,7)T denotes three Euler angle rates.

2.2.2. Dynamic Equations of Parafoil and Payload
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Define the antisymmetric matrix form of the vector a =
lax, ay, a;]7 as:
0 —a;  ay
a=| a, 0 —ay
—ay  ay 0

Where Oy = (po,qn, )", Qp = (Pp.ap,1p)T, Ve =
(ue,ve, wc)T. M, denotes the mass matrix of the payload.
R,y denotes the vector from the joint ¢ to the payload cen-
ter of gravity in the O.X.Y;Z. coordinate system. T,
denotes the transformation matrix from theO,X,Y.Z, co-
ordinate system to the OpX;Y};Z;, coordinate system. I
denotes the inertia matrix of the payload. Fg“ denotes the
aerodynamic force vector of the payload. FbG denotes the
gravity vector exerted by the payload. M), denotes the
mass matrix of the parafoil. M denotes the apparent mass
matrix of the parafoil. R¢, denotes the vector from the joint
¢ to the parafoil center of gravity in the O.X Y. Z. coordi-
nate system. T, denotes the conversion matrix from the
O, XeYeZ, coordinate system to the O, XY, Z), coordinate
system. I, denotes the inertia matrix of the parafoil. If
denotes the apparent inertia matrix of the parafoil. F;f de-
notes the aerodynamic force vector exerted by the parafoil.
FPG denotes the gravity vector exerted by the parafoil. M;;‘
denotes the aerodynamic moment vector exerted by the
parafoil. F. denotes the internal joint force vector at the
joint c. Detailed explanations are given in the references
[7-9].

2.3. MC-DSAC-T Algorithm

Fig. 2 illustrates the core process of the algorithm updat-
ing the network, which primarily involves the agent in-
teracting with the environment to collect data and using
that data to optimize the network parameters. Where ¢
denotes the time step, s; denotes the state, a; denotes the
action selected according to the policy 71y in the state s¢;
Adopt action in the state to interact with the environment
to transfer the state from s; to s;11. 7;(als) denotes the
probability of obtaining an action by sampling in the state
s, and the subscript i denotes the corresponding Actor net-
work parameters, i = (¢,$). Qj(s,a) denotes the value
estimation of the action taken on the state and the output
of the mean part of the Critcic network, and the subscript
j denotes the corresponding Critic network parameters,
j = (01,01,6,,0,). The B (Replay buffer) stores the set of
sample data(st, at, 14,5411, d) obtained at each time step, d
indicating whether the sampling of a target trajectory is fin-
ished or not. The data stored in B is used to train the Actor

B Actor
T

G et |
Critic2 ) (Critic2-target)

Delay update

Delay update

; O [ [T S,
— "] Replay bufter
5
Syl
Critic]-target
o Actor-target 0, (sa)
;(als)
Critic2-target
0;,(s.a)
CRE

Fig. 2. Algorithm structure

(Policy) network and Critic network. The target networks
employ delayed updates and soft updates to enhance train-
ing stability. The Gaussian distribution is used in the Critic
network to dynamically adjust the gradient size according
to the variance information when facing different reward
scales, to avoid the training instability caused by the change
of reward scale. The network with two pairs of critics is
used to suppress the overestimation of the Q-value.

2.3.1. Objective Function

The DRL algorithm adopted in this paper is based on the
deterministic policy version of the original DSAC-T algo-
rithm. To enhance stability during training, incorporating
the Monte Carlo thinking to constrain the update ampli-
tude of the policy gradient, thereby reducing fluctuations
in the policy iterative update process. The modified algo-
rithm is denoted as MC-DSAC-T. The following sections
will introduce the objective functions for the Actor and
Critic networks in the MC-DSAC-T algorithm.

2.3.2. Objective Function of Critic

a) The minimized objective function
Jz(6) = . ENB[DKL(TgJ’ZaHS/ﬂ)rZe('|51ﬂ))] ®)

A dynamic adjustment parameter w is introduced to up-
date the gradient:

J50) =w E [Dxa(Tp' Z5(ls,a), Zo(ls,a))] ©)

s,a)~B

Where Dg; denotes KL divergence, which is used to mea-
sure the similarity between two distributions, and its
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value is inversely proportional to the similarity degree.
Zg(-|s,a) = N(Qg(s,a),09(s,a)?) is Gaussian distribu-
tion function, where Qy(s,a) and 0y(s, a) is the mean and
standard deviation of the network output of the Critic;
Tg¢Zg(~|s,u) = r+ 9 * Z4(-|s,a), where r is the reward
value and 1y (0 < ¢y < 1) is the discount factor; After intro-
ducing the gradient scaling factor w, [z () is denoted as
]sanIe (9) .

b) The specific form of the objective function

(v = Qoy(s,))
op,(s,a)> + €

(Clyin,by) — Qy (s,0))” — o (5,0)2
B 0.(s,a)% +€ %o,(5,2)]
1 (10)

The relevant variables involved in the equation 10 are cal-

JE™(0:) ~ (w; + ew)E[-

Qe,- (S/ a)

culated in the following way.
- = argmin Qg (s, )|a ~ 75("|s )
y;”i" =7+7Qs, (s,a)

yrin — 4 q7 (s/,a/>‘ an

Z(s' 0" )~ 24, (s )

C(yz,b) == clip(yz, Qo(s,a) — b,Qq(s,a) +b)

Where w; is the square of the mean smooth update value
of the standard deviation of the network output of the
main Critic (see equation 12 for the update, taking ¢ =
3,0 < T < 1), b; combined with the Qp, (s, a) output of
the mean part of the main Critic network, the Gaussian
distribution sampling value of the Critic network is limited
to [Qg, (s,a) — b;, Qg, (s, a) + b;], and its update is shown in
the equation (13). €., and € are two small positive numbers,
€w is to prevent the gradient from disappearing and € is to
prevent the gradient from exploding.

w T E (et (-0 02
b; TC( 1})5 B[(Tgi(S,LZ)] +(1-1)b (13)

2.3.3. Objective Function of Actor

The minimized objective function

]TE((P) = ]ESNB,a~7T¢ [Gt * min (QG,' (S,LZ))] (14)

Where, G; denotes the cumulative discounted reward ob-
tained from the time step ¢ to the end of the sampling at
time step N, by using the current policy 714 to sample ac-
tion and interact with the environment.

See Algorithm 1. for the pseudocode of the MC-DSAC-T
algorithm.

Algorithm 1. MC-DSAC-T

1: Input:6y, 62, ¢, Bz, Br, T, M, B
2: Output: 01, 6,, ¢
3: Initialize target networks: 01 < 01,0, < 6y, g ¢
4: for each iteration do
5: for each trajectory in M do
6: for each sampling step do
7: Calculate action a¢ ~ 7(a¢|st)
8: Get reward r; and new state s;1
9: Store samples (s¢, at, 1t, 5541, d) in the B
10: The network parameters are updated using the data
stored in B:
11: Critic networks: 6 < 6 — ‘BZVQISZC"‘le(G)
12: The delay update:
13: Actor networks: ¢ < ¢ + BV ] (¢)
14: Target networks: 6 <~ 10+ (1 —1)0, ¢ + T +
(1-0)p
15: Clear B

2.3.4. Neural Network Structure

The Actor network and Critic network of the MC-DSAC-T
algorithm use MLP and the hidden layer activation func-
tion is all Tanh function. The output layer activation func-
tion of the former and latter is the Sigmoid function and
is not used, respectively. The Critic network includes the
mean and standard deviation networks, which have the
same network structure. Only the input and output layers
are different between the two networks. A 44-dimensional
state vector and a two-dimensional action vector are in-
puts to the input layer of Critic network, which output
values as the mean and standard deviation of the Q-value
function. In contrast, the Actor network has only a 44-
dimensional state vector as input, and its output value
is a two-dimensional action vector used to compute the
amount of left and right control of the motor. The neural
network structure is shown in Fig.3.

2.4. Reinforcement Learning

In reinforcement learning, for an agent to learn, it first
needs to input the current state s; of the parafoil system
into the main Actor network; then, the action a; output
by the network is used to interact with the environment,
and the corresponding reward r; is obtained. Finally, the
agent can use information such as states, actions, and re-
wards to learn. Therefore, the state space, action space,
and reward function directly influence the final learning
outcome, and the definitions of these three components
will be introduced below.
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Fig. 3. Neural networks structure

2.4.1. State Space

Input states determine the controller output, so multiple
observation states are employed to construct the state repre-
sentations to enhance the robustness of the controller. To ob-
tain effective observation values, the short-range and long-
range distances are subdivided according to the height
difference between the point on the target trajectory and
the actual position of the parafoil system. The current alti-
tude of the parafoil system is the reference altitude, and the
short-range and long-range distances are taken 50 meters
and 200 meters down from the reference altitude, respec-
tively. The short-range and long-range distances take six
and seven target points as reference points to calculate the
corresponding observation values, and the target points
can be obtained according to the interpolation function of
the target trajectory height. The observation states in the
short-range distance representations include horizontal ve-
locity angle error, heading angle error, glide ratio error, and
horizontal distance error between the parafoil system and
the target points. The observation states in the long-range
distance representations include heading angle error be-

real trajectory

target trajectory

Fig. 4. Schematic of some observation states

tween the parafoil system and the target points, and the
horizontal curvature of the trajectory segment contained
between two neighboring target points. As well as the cur-
rent wind velocity (three-dimensional), the Euler angles of
the parafoil (three-dimensional), and the actual motor con-
trol value (two-dimensional). Each observation state in the
short-range and long-range distances has six observation
values. Some observation states above are shown in Fig. 4.

In Fig. 4, the green trajectory is the target trajectory
tracked by the parafoil system, and the blue color denotes
the trajectory generated by the parafoil system during the
actual flight. The red and blue points are the points on
the target trajectory and the actual position of the parafoil
system, respectively. The symbol A denotes the heading
angle error, and B and C respectively denote the horizontal
velocity angle error between the parafoil system with the
target velocity and wind velocity. The curvature can be
computed by combining the change in horizontal angle be-
tween vectors V;, .1 and V;, with the horizontal trajectory
length between points rp and rp+1.

2.4.2. Action Space

During the flight, the motor dynamically controls the
parafoil system by precisely adjusting the left and right
control lines. To align with the control rules of the motor,
the action space is defined as a two-dimensional continu-
ous vector a=[ay,t, a,ign:], which corresponds to the motor
control output. This vector a is transformed into the control
output of the motor via a mapping formula:

a; x 1.25 -0.125

The value range for each component of the vector and
motor control output is [0, 1].
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2.4.3. Reward Function

The reward function is crucial in the iterative update of pol-
icy parameters. The policy directly influences the control
output of the motor, and consequently, the reward func-
tion directly impacts the control effect. In this study, the
horizontal distance error (m) and horizontal velocity an-
gle error (deg) between the actual flight path and target
path at each time step were considered to make the reward
function effectively guide the update of the policy network
parameters.The details are as follows:

N
distance_error = %1; \/(x: - xi)2 + (yﬁ - ]/i)2 (15)
1 N
directi =— le(xi11 — Xi, Yir1 — Yi
irection_error N ,; |1mg e(X,+1 Xi, Yi+1 yz) (16)

—real_angle_velocity|

reward = - (distance_error x direction_error)  (17)

Where the simulation time step N for each time step is set
to 100, and the distance error and direction error are cal-
culated in the unit of simulation time step with intensive
reward. At the same altitude, (x;,y;) denotes the hori-
zontal coordinate corresponding to the actual flight trajec-
tory of the parafoil system and (x;, ;) denotes the hori-
zontal coordinates corresponding to the target trajectory.
(xi41,Yi1+1) denotes the horizontal coordinate adjacent to
(x;,¥;). In particular, because adjacent coordinate subtrac-
tion is used to calculate the velocity on the target trajectory,
N + 1 points should be selected, and the height Zy; of
the N + 1 point is obtained by the approximate operation
of the corresponding height of the N — 1 and N simulation
time steps of the parafoil system: Zn41 = 2% Zy — Zy_1.

2.5. PID

PID is a classical control method that consists of four main
components: the proportion coefficient K, the integration
coefficient K;, the differentiation coefficient K;, and the
error function Error. Among them, the Error has an impor-
tant influence on the control effect, usually, after the Error
is determined, the three coefficients of K, K;, and K can
be found in a set of effective control parameters through
the finite trial-and-error method. The error of the PID con-
troller in this study is described below, and the values of
the coefficients of Kp, K;, and K; found by the trial-and-
error method are given in the experimental section below.
The computational formula for the error function in this
study is as follows:

Error = Vo % D, * (1 4+ W) (18)

Table 1. Wind Field Parameters

Wind Type Speed Direction
Mean Wind Unifor m[O, 3] Uniform[_1 80, 180]
Gust Wind Uniform[o, 1.5] Random[_lg(), 180]

Random Wind ~ Uniformpy o5 Randomp_igp, 130]

Table 2. Wind Field Parameters

Wind Type Level

Mean Wind Speed*(altitude/7 0)0%5

Gust Wind Speed*random(0,1) fo,
Random Wind  normal(0, Speed / 3, altitude)

where V., denotes the angle error between the actual
velocity of the parafoil system and the target velocity. D,
denotes the horizontal distance error between the actual
position of the parafoil system and the target position. W,
denotes the horizontal wind speed multiplied by the angle
difference between the horizontal wind direction and the
heading angle of the parafoil system.

3. Results and discussion

3.1. Experiment Settings

Experiments are conducted on CPU, using the Ubuntu
24.04 operating system, based on Python 3.11 and Pytorch
2.1.0 deep learning framework.

3.1.1. Dataset and Environment

The training data set used in the experiment is 1000 trajec-
tories generated by introducing random action sequences
(unilateral pull-down) to interact with the simulation en-
vironment under the superposition of three wind fields of
the average wind, gust wind, and random wind (50 tra-
jectories were generated separately for the test data set).
Tablel shows how to obtain the wind speed and direction
for the three winds. The wind level is obtained based on
the wind speed and height obtained by sampling the uni-
form distribution, and the calculation method is shown in
Table 1. The wind level is calculated from the wind speed
and the current altitude: decomposing the wind level into
three axes according to the wind direction to acquire the
wind vector.

3.1.2. Parameter Setting

This section describes the setting of the experimentally
relevant parameters and the relevant details during the
training process. The relevant parameters of the parafoil
system are shown in Table 3. In addition, the relevant
parameters involved in the training process of the neural
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Table 3. Physical parameters of the parafoil system

Physical parameters Value
Wing Span 7.5m
Wing Area 28m?
Geometric Chord Length ~ 3.75m
Leading Edge Line Length ~ 7.5m
Canopy Thickness 0.675m
Trailing Edge Line Length ~ 8.0m
Suspension Line Length 1.0m
Parafoil Mass 5kg
Payload Mass 135kg

Table 4. Hyperparameters of the MC-DSAC-T algorithm

Hyperparameter Value
Optimizer Adam (default)
Actor learning rate le-3

Critic learning rate le-3

Learning rate decay 0.95

Discount factor (vy) 0.99

Soft update factor ()  0.01

Delayed update 1

Batch size M 100

Torch random seed 1009
Random number seed 0
Random wind seed int(0,65536)andom_number _generator

networks controller are shown in Table 4. The Actor net-
work and Critic networks are described in detail above.
The parameter settings in Table 3 and Table 4 were used for
simulation experiments; during training, trajectories were
randomly selected from the training data set, segments of
the selected trajectory were randomly intercepted as the
target trajectory, and the wind field was consistent with
the wind field when generating the target trajectory. An
iterative update of the model requires M target trajectory
data. When sampling each of the M target trajectories, the
following two principles are followed:

1) If the termination condition is satisfied and the total
number of sampled target trajectories (including this one)
does not reach the batch size M, then replace the trajectory
and continue sampling;

2) If the termination condition is satisfied and the number
of sampled target trajectories reaches the batch size M, the
sampling is terminated, and the sampled data of this batch
is used for model training.

The termination condition for sampling each target trajec-
tory is as follows.

1) The time step of tracking the target trajectory reaches the
set maximum value of 100;

2) The horizontal distance error with the target trajectory
at the same height is more than 200 meters.

3.2. Training Results and Discussion

Average distance error
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Fig. 5. Train curve

Fig. 5 illustrates the training process of the MC-DSAC-T
algorithm. Since the initialization of the weights and bias
values in both the Actor network and the Critic network
are random, the control output from the Actor network at
the beginning of the training is not effective in controlling
the parafoil system to track the target trajectory. In addi-
tion, the initial Q-value estimation of the Critic network
is not sufficient to properly guide the update of the Ac-
tor network. As a result, the distance and direction errors
increase rather than decrease at the beginning of training.
However, as the number of training iterations increases,
the Critic network gradually converges to accurate Q-value.
This convergence allows the Actor network to learn more
efficient control parameters, thus reducing the distance and
direction errors over time.
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Table 5. Mean Values of Performance Evaluation Indices
for Two Controllers

Performance Index PID MC-DSAC-T PID
Average distance error 3458m  24.21m M
Average direction error 5.59deg 8.78deg 100

Average energy consumption  0.05 0.35

80

3.3. Test Results and Discussion "
Fig. 6 illustrates the test results of controlling the parafoil
system to track 100 target trajectories using the PID
controller(Ky,= 4.5, K;= 0.05,K;= 0.1 ) and the neural net-
work controller trained by the MC-DSAC-T method. The 0

average distance error between the actual flight trajectory 0 20 10 60 50 100

Trajectory

20

Average distance error (m)

of the parafoil system and the target trajectory, the average

velocity angle error, and the average motor energy con-
sumption in the tracking control phase are considered the (@) Distance error

controller performance evaluation indexes. The two con- PID
. . —— MC-DSAC-T
trollers control the parafoil system to track each target tra- b

jectory, Figs. 6a, 6b, and 6c show the average distance error,

S
|

velocity angle error, and energy consumption of tracking
each target trajectory, respectively. Table 5 shows the mean 304
values of the three performance evaluation index objects of
the two controllers controlling the parafoil system to track 20

100 target trajectories. Fig. 7 shows the tracking control

1)
1

effect of two controllers controlling the parafoil system to

Average direction error (deg)

track the same target trajectory(green). Combining the data
in Fig.7, Fig.6, and Table5, it can be concluded that the
PID controller can control the velocity angle of the parafoil

0 20 1‘0 6‘0 8‘0 l(IJO
Trajectory
system closer to the velocity angle of the target trajectory,

and consume less energy at the same time. However, the (b) Direction error

neural network controller can control the parafoil system
closer to the target trajectory, and the control accuracy of — L,é?])SAC_V]<‘

the distance is better than that of the PID controller.

0.44
The neural network controller, trained by the MC-DSAC- \/\MWVWV\/N\,MAM/VWW

T algorithm, uses the bilateral pull-down to control the

S
1

parafoil system, while the PID controller uses the unilateral
pull-down. The bilateral pull-down can control the parafoil
system to realize the operation of deceleration and rapid

Average energy cost
S
e
1

=
1

altitude reduction, which is difficult to achieve by unilateral

pull-down. However, when controlling turning and other

control operations, the extra energy after the left and right 07

pull-down of the bilateral pull-down cancel each other is 0 20 10 60 80 100

equivalent to using only the unilateral pull-down, so the frajectory

energy consumption of the bilateral pull-down is higher )
than that of the unilateral pull-down. The error function of (€) Energy consumption
the PID controller and the reward function of reinforcement Fig. 6. Test results
learning both consider the distance error and direction
error. Combining the test results of two controllers, the

neural network controller is superior to the PID controller
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(b) MC-DSAC-T

Fig. 7. Control effect comparison

in the overall control accuracy of direction and distance.

4. Conclusion

In this study, the single-episode reward information was in-
troduced into the policy objective function of the determin-
istic DSAC-T algorithm to get the MC-DSAC-T algorithm.
Since the single-episode reward information is obtained
through real sampling, it is unbiased and can effectively
reduce the bias in the temporal difference method used by
the DSAC-T algorithm, thereby enhancing the stability of
the policy iterative update.

Aiming the trajectory tracking control problem of the
parafoil system, the MC-DSAC-T algorithm was employed
to train a neural network controller. Experimental results
demonstrate that under wind conditions, the trained neu-
ral network controller could effectively control the parafoil
system to track target trajectories with accuracy. This study
may provide some help for research in reinforcement learn-
ing algorithms and the control of the parafoil system.

However, the study utilized a nine-degree-of-freedom
(9-DOF) dynamic model of the parafoil system, which dif-
fers from the real-world conditions. Future work can ex-
plore using higher-DOF dynamic models for the simulation
studies and semi-physical simulation experiments. Terrain
threats can also be added simultaneously to realize the
application of the parafoil system in complex terrains.

Xuepu Zhang
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