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Wind turbine generators operate in harsh areas for a long time, resulting in frequent problems such as blade
breakage, and traditional blade defect detection methods have low detection accuracy. In this paper, an end-to-
end target detection algorithm FRE-DETR based on wind turbine blade defects is designed, and the detection
speed and detection accuracy of the end-to-end detection model are further improved by redesigning the feature
extraction location in the backbone network and proposing a feature selection and fusion module. FRE-DETR
is tested on a wind turbine blade defect dataset, and the results show that the model improves the detection
accuracy by 2% compared with RTDETR-R18. The inference speed is already higher than RTDETR-R18 when
the step size is larger than 2. The Gflops of the model is only 66.8% of that of RTDETR-R18, which also greatly
reduces the computational requirements of the hardware when deployed. FRE-DETR meets the requirements of
real-time detection.
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1. Introduction

In recent years, with the continuous development of the
new energy industry, wind energy, solar energy, nuclear
energy, and other new energy industries have significantly
contributed to promoting sustainable economic develop-
ment. Wind energy has attracted people’s attention with
its clean and renewable characteristics and has become a
mainstream new energy industry. Wind turbine blade is the
most indispensable component in wind power generation
equipment [1]. When the blades of a wind turbine are de-
fective, it impacts the turbine’s power generation efficiency
and, if left unrepaired, can lead to costly downtime. In
such cases, the only solution may be to replace the blades
instead of repairing them. This will cause significant losses
to the economic benefits of the wind turbine. The operation

of the wind turbine causes great safety hazards [2]. There-
fore, the preliminary inspection and repair of wind turbine
blades is essential.

Visual inspection in non-destructive wind turbine blade
defect detection testing has greater advantages in terms of
real-time, high efficiency and safety [3]. Visual inspection
of wind turbine blade defects is divided into infrared light
state and visible light state detection. Focusing on a single
category restricts infrared detection capabilities and may
obscure visible cracks and other defects in wind turbine
blades, as external flaws can often be misleading. Hence,
its development speed is relatively slow compared to the
visible light state defect detection.

Visual inspection of blade defects in the visible light
state has more detection categories and high detection ef-
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ficiency, and defect types are more intuitive and clearer.
Since the emergence of machine learning, many scholars
have focused on wind turbine blade defects under the vi-
sual detection of wind turbine crack defects described by
Haar features by training traditional cascade classifiers
[4]. However, similar classifiers that classify by cascade
often only recognize and classify one class, which makes
it difficult to meet the detection requirements at this stage.
Subsequently, with the emergence of deep learning, various
neural networks represented by ResNet and mask rcnn are
proposed to detect blade defects [5, 6], achieving excellent
detection results. Still, the depth of the ResNet and mask
rcnn networks is too deep, resulting in a model volume
that is too large. The hardware requirements are also high
when detecting, making it difficult to deploy to the UAV
for real-time inspection functions.

With the continuous development of target detection,
faster and more accurate YOLO series of two-stage target
detection algorithms based on the CNN framework have
been proposed. Many scholars have made targeted im-
provements to the detection algorithms of the YOLO series
for the characteristics of each wind turbine blade defect
type. Among them, Liu’s research introduces a model tai-
lored for detecting defects in wind turbine blades, address-
ing issues such as paint removal and small target leakage.
By incorporating an attention mechanism, Liu enhances the
feature pyramid structure, effectively minimizing the risk
of overlooking small targets during the feature extraction
phase. This innovation maximizes the use of small target in-
formation, resulting in a notable improvement in detection
accuracy [7–11]. Furthermore, Liu’s work demonstrates
the implementation of a lightweight model to replace the
original large-volume network module, leading to a more
efficient YOLO detection model [12–15]. Additionally, re-
dundant channels are removed through channel pruning
of the original network, significantly reducing the model’s
size. By applying a distillation process, the larger model in-
forms the learning of the pruned model, allowing for much
higher detection accuracy and reduced processing speed.
High detection accuracy and speed reduction, great edge
equipment in the UAV on the wind turbine blade defects
detection speed. YOLO algorithm, however, realizes the
real-time detection task of the wind turbine blade defects.
The types of fan blade defects are numerous and varied.
When the YOLO detection algorithm is tasked with classi-
fying a wide range of datasets and categories, it struggles
with the long-term memory of the dataset. This limitation
can lead to fatigue, negatively impacting detection and
classification accuracy.

With the continuous development of neural networks,

the network model represented by Transformer, which has
long-term memory and is used to process large datasets,
has been used in visual detection, which has a large
computational complexity, but it improves the yolo algo-
rithm’s insufficiency in dealing with a large number of
datasets through its efficient and excellent detection accu-
racy. Firstly, the swin-transformer [16], which represents a
very large volume of target detection algorithm, obtained
very high detection accuracy in coco datasets. Subsequently
to improve the inference speed of visual transformer-based
target detection algorithms, many lightweight detection
networks based on multi-head attention with FFN feed-
forward networks represented by efficientNet [17] were
proposed. This greatly facilitates the development of vi-
sual transformer model-based deployment in edge devices.
Baidu proposed an RTDETR [18] real-time detection model,
which only encodes deep features, greatly reducing the
computational complexity and volume of the model, which
also makes the deployment of DETR detection models in
edge devices a reality. Xinlin Liu took the lead in utilizing
the RTDETR detection model to detect insulator defects
[19], and obtained excellent detection speed and accuracy.
Guemas et al. [20] used the RTDETR detection model to
detect and classify Plasmodium falciparum with excellent
results. Therefore, in the field of wind turbine blade de-
fect detection, the types of blade defects will become more
and more diverse in the future, which puts forward higher
requirements on the number of datasets, and also puts for-
ward higher requirements on the long-term memory of
the algorithms, so the application of RTDETR in the detec-
tion of defects in wind turbine blades is also particularly
important, and it will also become a future development
trend.

1. This paper proposes a new DETR real-time detection
model to solve the problems of difficult deployment,
slow inference, and low detection accuracy of large
transformer-based models.

2. In this paper, the FasterNet network is improved by
fusing the heavy parameter operation with it, which
substantially improves the model’s ability for feature
extraction.

3. In this paper, a lightweight feature selection and fusion
attention module, SMLCA, is proposed to improve the
edge feature extraction of wind turbine blade defects
and enhance the completeness of large target detec-
tion.
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2. Methods

RTDETR model, which encodes only the last layer of deep
input features, thus greatly improving the processing speed
of the algorithm and reducing the computational complex-
ity. Shallow input features have rich target information
but less feature extraction for background information.
However, the last layer of deep features contains more
complex and detailed semantic information, which signifi-
cantly enhances the ability of the transformer to optimize
background recognition and feature performance.

A new multi-head attention module, AIFI, is proposed
to enhance the linkage of global feature information, which
encodes features to generate tokens through a sliding win-
dow and integrates global feature relevance through soft-
max function the calculation process is shown in Eq. (1),
where QKV are the model query, key values, and weights,
respectively, and subsequently generates positional encod-
ing to further store the feature information in the long term
using feature mapping, thus realizing the long term mem-
ory of defective features. A new perceptual query has been
proposed to optimize RTDETR for target feature extraction
and detection. This approach introduces IoU (Intersection
over Union) perceptual constraints, which help generate
high classification scores for features with high IoU scores
while assigning low classification scores to features with
low IoU scores during training. As a result, this method
enhances detection accuracy. The anchor frame threshold
filtering and NMS post-processing are eliminated in the
inference stage, improving the inference speed of RT-DETR
[21].

Attention(Q, K, V) = so f t max

(
QKT√

dk

)
V (1)

Fig. 1 shows the improved RTDETR network structure,
and a lighter backbone network is chosen for the network
redundancy problem to reduce the computational require-
ments of RTDETR with edge detection devices and increase
the inference speed of RTDETR. Meanwhile, we believe it
is more effective to use Reparametric Convolution Rep-
Conv for feature extraction in the backbone network and
introduce RepConv for feature extraction in FasterNet. In
addition, to further improve the algorithm’s detection per-
formance, a new module is proposed for the final selec-
tion and fusion of features in the neck network. The final
detection output of the target box is still realized by the
combination of perceptual query and multi-head attention
mechanism, which transforms the detection task into an
unordered sequence output by matching Q, K and V in a
process like the DINO detection header.

The AIFI Multihead Attention Module first processes

the Head for deep features, which are subsequently pro-
cessed by the Efficient Feature Selection and Fusion Module
to be fed to the final Decoder Detection Head.

2.1. FRNet backbone

To further increase the inference speed of RTDETR, reduce
the computational complexity of RTDETR, and improve the
edge deployment capability of RTDETR, the lighter-weight
Fasternet is adopted as the backbone network of RTDETR.
The structure of Fasternet [22] is shown in Fig. 2. First,
PConv and pointwise convolution form PWConv, then BN
normalization and GLEU neuron activation are performed,
which improves the generalization ability of the model in
feature extraction and enhances the feature representation.
In PConv, target and background features are extracted by
slicing the number of channels and convolving some of
them, which is insufficient for feature extraction using ordi-
nary convolution. Therefore, using REPConv for branching
feature extraction in PConv seems more efficient. PConv
selectively extracts a subset of features while leaving the
other features unprocessed. This method diminishes the
computational demands on the neural network and re-
duces memory access during processing, lowering latency.
In comparison, RepConv begins by utilizing a multi-branch
convolutional layer to capture diverse features throughout
training, with each branch focusing on learning particular
characteristics. We combine the two so that the main branch
network fully extracts features while reducing the number
of parameters of the neural network, reducing the com-
putational redundancy of the network, and increasing the
inference speed of the network. A unique set of parameters
is learned and continuously optimized during training to
minimize the loss function, thus improving training results.
Reparametrizing multiple branches as master branches dur-
ing the inference process ensures the accuracy of inference,
avoids the additional computational overhead of multiple
branches, and effectively guarantees low latency.

2.2. Efficient feature extraction and fusion module

The features are stacked by convolution to stack the num-
ber of channels continuously. Thus, the feature map carries
more and more feature information, so choosing how to
utilize these maps efficiently is particularly important. To
solve this problem, attention mechanisms have emerged to
address the feature information clutter situation, ensuring
that the neural network always focuses on the more critical
information and ignores redundant information. Both tra-
ditional channel attention and spatial attention have their
shortcomings. For example, the SE [23] attention mecha-
nism compresses all channels into a single value, subse-
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Fig. 1. FRE-DETR network structure. The backbone consists of a modified FasterBlock stack.

Fig. 2. Shows the composition of the FasterNet Block
module on the left, while the structure of PConv and the

computational flow are demonstrated on the right.

quently focusing only on information with higher weights,
but this is undesirable in wind turbine blade defect detec-
tion, for which the edge information of blade defects is also
very important in carrying out target detection. In contrast,
for the extraction of edge information, the spatial attention
mechanism seems more efficient to pay attention. There-
fore, combining both characteristics for feature enhance-
ment tends to provide superior performance. In MLCA
[24], attention strengthens the channel feature information
and introduces local spatial information to strengthen the
edge feature extraction ability for defects. We introduce lo-
cal feature extrusion learning in MLCA to enhance further
the ability of the channel attention to focus on small targets
in response to the characteristics of the category size span

in the wind turbine blade defect data set.
The computational process of this channel attention is

shown in Fig. 3(a). First, local spatial information is ex-
tracted through local pooling. One path sends this informa-
tion to global pooling for one-dimensional feature extrac-
tion and local feature compression learning. In contrast, the
other path reconstructs it to create ks*ks one-dimensional
vectors for feature extraction from the local features. The
information fusion was carried out after the inverse pool-
ing operation of the two ways. The k-values in the feature
extraction of all the one-dimensional convolutions are com-
puted in the way proposed in ECA [25], the calculation
process is shown in Eq. (2). The fused feature map is mul-
tiplied point by point with the original input feature map
to get the final output feature map. The whole SMLCA
calculation process is shown in Eqs. (2) and (3).

ks = ϕ(C) =

∣∣∣∣∣ log(C)2
r

+
b
r

∣∣∣∣∣
odd

(2)

Fc = CA(F)⊗ F (3)

CA(F) =σ(LAvgPool(GAvgPool))

+ σ(LAvgPool(LAvgPOOL)) + S
(4)

where C is the number of channels, k is the convolution
kernel size, and b and r are hyperparameters. The value
of k is k when k is odd and plus 1 when it is even. F
is the input feature and Fc is the SMLCA output feature,
where POOL is the pooling operation and S is the localized
squeeze learning output.
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Fig. 3. Structure of the efficient feature extraction and fusion module and its internal structure. (a)SMLCA network
structure. The features are learned in three ways to improve the ability to extract defective feature edges. (b)Structure of the

efficient feature extraction and fusion module.

The structure of the efficient feature extraction and fu-
sion module is shown in Fig. 3(b). We first use two 3 × 3
ordinary convolutions for deep feature extraction in the Fea-
ture selection Block and then introduce MLCA for feature
selection to improve the attention to important features,
reduce the influence of noise, and reduce the interference
of other redundant information such as the background,
and the residual connection is used at the end of the net-
work to further improve the ability to utilize the features
and to improve the expressive ability of the neural network
[26, 27]. Subsequently, the three-layer Feature selection
Block is connected in series to the Feature fusion Block to
complete the network module, which is then used in the
output fusion layer before the DETR decoder to enhance
the decoder’s attention to the important features of the
blade defects as well as to enhance the network’s ability
to represent the features at a finer granularity level, Model
representation capability.

3. Result discussions

3.1. Dataset

The dataset comes from a video of defective wind turbine
blades taken by an unmanned aerial vehicle provided by
Roboflow, for which we took screenshots and captured de-
fective wind turbine blades in the blade chamber, some
pre-processing operations [28–30] like image noise reduc-
tion are performed on the image, in addition to a dataset of
defects in wind turbines presented by Foster et al. [31] and
Shihavuddin et al. [32]. These two datasets have a total of
2900 images and the defect types include four categories:

damage, dirt, troubles and defects. The ratio of training
and validation sets is 4:1.

3.2. Training details

The experimental CPU for this paper’s wind turbine blade
defect dataset is a 16 vCPU Intel(R) Xeon(R) Platinum
8350C CPU @ 2.60GHz, GPU is an RTX 3090(24GB) * 1,
PyTorch version is 1.11 .0 , Python version is 3.8 , and the
operating system is Linux (ubuntu 20.04), Cuda version
11.3. the optimizer uses AdamW, batch is 20, epoch is 250,
workers are 4 , initial learning rate is 0.0001 , momentum is
0.9 , and img size is 640 × 640. The optimizer uses a batch
of 20 , an epoch of 250 , workers of 4 , an initial learning
rate of 0.0001 , a momentum of 0.9 , and an image size of
640 × 640. The optimizer uses an RTX 3090 (24GB) * 1.

3.3. Ablation experiments

The detection accuracy and model volume change perfor-
mance of the FE-DETR proposed in this paper in the wind
turbine blade defect dataset are shown in Table 1. Regard-
ing detection accuracy, the detection accuracy of the im-
proved FE-DETR model Precision is improved by 1.4%,
and the average accuracy mAP0.5 is improved by 2%. Re-
garding model volume change, the number of parameters
of the improved model is reduced to 63.15% of the original
model. GFLOPS is also reduced to 66.84% of the original
RT-DETR model, so the model’s volume is greatly com-
pressed. Higher detection accuracy is obtained with several
parameters and computational complexity. The improved
mixATTention method performs comprehensive feature ex-
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traction for every section of the feature map. Incorporating
partial spatial attention enhances the clarity of edge feature
extraction. This improvement, in turn, boosts the detection
of defects in wind turbine blades. The largest decrease in
model size is achieved when only FasterNet is used as the
backbone network, which also verifies that slicing the num-
ber of channels and performing feature extraction on only
some channels can significantly reduce the computational
and parameter counts of the model. However, decreas-
ing the model’s computational complexity will also impact
the detection accuracy. As shown in Table 1, the model
mAP50-95 decreased by 1.8%, so we optimized some of
the convolutions in the PConv and used the REPConv for
feature extraction. From the detection data, RepConv use
multi-branch training, by widening the width of the net-
work, to improve the model for the target learning ability,
multiple convolutions at the same time on the target extrac-
tion effect is significantly better than the extraction effect
of a Conv, and at the same time for the reasoning will be
multiple convolutions merged into one which also ensures
that the model inference speed.

Subsequently, targeted experiments on the effectiveness
of the feature selection and fusion module were conducted
to reflect the excellent performance of the improved model
detection effect and comparative experiments were con-
ducted using the previously proposed SE, ECA, and CBAM
attention mechanisms. The results showed that the im-
proved attention mechanism had the highest average ac-
curacy, mAP50, and its parameters were lower than other
attention mechanisms. It is proved that the improved at-
tention mechanism greatly improves the average accuracy
mAP50 of the model without increasing the number of
high parameters. Compared with the original MLCA, we
fuse the ideas of local squeeze learning and small scale
fusion, so that the channels within the small scale are fully
squeezed to learn a large amount of edge information of
the image, which makes it easier for the model to learn
the target information and reduces the interference of the
background information.

The average accuracy mAP50 change of the model dur-
ing training is shown in Fig. 4. Fig. 4(a) shows the com-
parison of model ablation experiments. After 200 rounds
of training, the average accuracy mAP50 of FRE-DETR is
consistently higher than that of the other models, which
represents that FRE-DETR has the optimal detection accu-
racy. Fig. 4(b) shows the comparison test of the attention
mechanism, and our attention mechanism with channel
squeezing learning capability has the superior detection
accuracy. All of the above are consistent with the final ex-
perimental results on the validation set. Fig. 4(c) and (d)

shows the precision change curves of the model during
the training process, which are not much different from
each other except that a significant gap can be seen at the
accuracy peak. Still, the model has a large Precision im-
provement compared to RTDETR18.

Table 3 shows the average accuracy inference results
for each category. When using the Efficient Feature Selec-
tion and Fusion module, the detection model greatly im-
proves the effectiveness of WORN and FLAW. The results
show that the module learns the target’s edge information
through extrinsic learning and local space computation
after extrinsic learning, and compresses the features in
the small range channels so that each channel is enriched
with feature information from all channels, while the small
range channels contain a large amount of target edge infor-
mation, which results in a substantial enhancement of the
model’s ability to focus on and process feature edge infor-
mation. This enhancement improves the detection accuracy
for larger targets and enhances the integrity of potentially
defective targets.The detection results of target detection
methods such as SSD and YOLO series are also shown in
Table 3, where the computational volume of the model is
measured using Gflops and the computational accuracy of
the model is evaluated using the average precision mAP_50.
It can be found that the proposed FRE-DETR exhibits excel-
lent detection performance, and compared with the YOLO
model with the same volume or large volume, our model
is smaller in size and lighter in structure, and the model
achieves the highest detection accuracy even with a small
volume. Comparing YOLOv7 and YOLOv9, the detection
accuracy is the same or even higher than that of YOLOv7
at 1/3 of the size of YOLOv7, which proves that our model
is fully capable of detecting defects in wind turbine blades.
We also conducted parameter optimization experiments on
the local learning scale in the model attention module, and
the experiments proved that the model detection effect is
best when the local scale ks is 5.

3.4. FPS test experiment

To fully reflect the computational complexity of the model
and evaluate the inference speed of the model, we tested
the inference speed of the model at different step sizes, in-
cluding 1, 4, 8, 16, and 32. thereby fully utilizing the graph-
ics card’s performance to obtain a more accurate inference
speed. The inference speed of each improved model at var-
ious batch sizes is illustrated in Fig. 5. The original model
demonstrates the highest frames per second (FPS) when
the batch size is set to 1. However, when the batch size is 2
or greater, all the improved models exhibit an FPS that sur-
passes that of the RT-DETR18 model. Combined with the
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Table 1. Results of model ablation experiments.

Methods Parameters/M GFLOPS Precision mAP50 mAP50-95
RT-DETR18 19876896 57.0 79.3 77.4 48.9

FasterNet-DETR 10811940 28.5 80.3 77.5 47.1
FR-DETR 10812770 28.5 80.8 78.3 48.8

FRE-DETR 12552464 38.1 82.9 79.4 48.9

Table 2. Attention comparison experiment.

Methods Parameters/M GFLOPS Precision mAP50 mAP50-95
SE 12552374 38.1 80.8 78.3 48.6

ECA 12533987 38.1 82.0 78.6 47.2
CBAM 12552824 38.1 81.1 78.7 50.1
MLCA 12552464 38.1 80.7 78.7 49.0
Mixatt 12552464 38.1 82.9 79.4 48.9

(a) (b)

(c) (d)

Fig. 4. Variation of model training process.

above reasoning accuracy experiments, it is proved that our
detection models are already much higher than the original
model in terms of detection accuracy and detection speed.
Subsequently, inference speed tests were conducted for
different convolutions. At batch size 1, the FPS is already

higher than that of CBAM. With the increasing batch size,
the improved attention mechanism has a similar inference
speed to other classical attention mechanisms. Combined
with the above inference accuracy test, the improved model
has higher detection accuracy when the inference speed is
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Table 3. Comparison of detection accuracy between categories.

Methods #Params mAP_50 damage dirt worn flaw
Ks=5 38.1 79.4 73.3 86.2 80.9 77.2
Ks=7 38.1 79.1 72.8 86.7 79.4 77.5
Ks=9 38.2 78.7 72.4 85.9 79.6 76.9

Ks=13 38.2 79.0 73.1 86.0 79.8 77.1
YOLOv5 50.2 74.1 70.1 84.2 73.4 68.7
YOLOv7 102.6 79.2 72.8 86.8 80.4 76.8
YOLOv8 79.3 79.2 72.1 86.9 81.0 76.8
YOLOv9 103.2 79.6 73.5 86.2 80.5 77.6
YOLOv10 64.1 79.1 73.1 85.7 80.2 77.4

Faster RCNN 183.9 71.8 70.4 72.2 72.4 72.2
SSD 62.8 70.7 69.5 71.1 70.4 71.8

RT-DETR 59.4 77.4 71.9 88.6 76.4 72.6
FasterNet-DETR 32.8 77.5 72.1 85.9 79.5 72.5

FR-DETR 34.2 78.3 73.1 87.3 76.9 75.9
FRE-DETR 38.1 79.4 73.3 86.2 80.9 77.2

guaranteed to be the same. FRE-DETR improves FPS by
34.5 compared with RT-DETR at step size 16, and FasterNet-
DETR improves by 82.5 compared with RT-DETR, which is
a huge improvement and proves that the improved model
has a faster inference speed compared with the original
model.

Fig. 5. Comparison of model inference speed.

3.5. Model comparison tests and detection experiments

For the efficiency and effectiveness of the proposed atten-
tion module for target edge reinforcement, we visualize the
heat map of the output of the attention layer and compare
it with the model without using this attention module. In
Fig. 6, it can be found that the model after using the atten-

tion module becomes more focused on the defects, and it is
easier to perceive the deep features, especially for the edge
delineation of the features becomes clearer. It improves
the model’s ability to suppress the noise of the target with
linear representation, which in turn improves the model’s
ability to express the tracking of the target [33, 34].

When the model weakens the NMS post-processing, it
is very likely to cause the overlapping of the detection
frame, which not only makes the detection effect messy
but also easily causes the detection frame to be unable to
fully align with the defects, which can be seen from Fig. 7,
where the overlapping of the detection frame of the RT-
DETR model is very serious, and the normal detection
effect cannot be obtained. The FRE-DETR Due to the ex-
istence of the computational process of local pooling, the
computational ability can be enhanced by pooling different
regions, which in turn makes it easier to highlight the re-
gion where the target feature exists, so that the target region
receives enhanced attention and other background regions
receive less attention, which in turn makes the model pay
more attention to the region with strong attention and re-
duces the generation of redundant detection frames when
generating detection frames. detection model significantly
reduces overlapping detection frames, enhancing accuracy.
FRE-DETR demonstrates superior performance in detect-
ing small targets, as illustrated in Fig. 7. The comparison
highlights that the detection accuracy for small targets is
significantly improved, effectively addressing the issue of
target leakage, and enhancing the model’s overall detection
capabilities. Both models have a better detection effect for
detecting a single target, and there is no leakage or misde-
tection phenomenon. Without post-processing operation,
overlapping the prediction frames when performing dense
detection is still easy, which is unavoidable, as seen in Fig. 7.
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Fig. 6. Model Heat Map Visualization.

Fig. 7. Model detection experiment.

Therefore, further study is needed for the subsequent more
FREE detection.

4. Conclusions

This experiment proposes a new FRE-DETR detection
model for wind turbine blade defects by improving the
hybrid DETR, which has faster detection speed, higher de-
tection accuracy and lower model volume. FasterNet is
chosen as the backbone network for defective feature ex-
traction based on the lightweight feature extraction module,
and the reparameterization module for feature extraction
is introduced to address the problem that partial convolu-
tion is not effective enough for defective extraction, which
greatly ensures the improvement of feature extraction ef-
ficiency without affecting the inference speed. Finally, a

novel feature selection and fusion module is proposed by
enhancing the detail features inter-channel features to solve
the problem of cumbersome feature maps and the inability
to effectively utilize more effective features, as well as the
problem of fuzzy boundaries that are difficult to identify
the defective boundaries of wind turbine blades, to further
improve the recognition accuracy of FRE-DETR on the de-
fects of wind turbine blades. From the final experiments,
we can conclude that FRE-DETR outperforms RT-DETR in
terms of inference speed at step sizes larger than 2, and
the FPS outperforms RTDETR by close to 200 frames at
a step size of 32, the average detection accuracy mAP_50
improves by 2%, and the computational complexity of the
model is only 64.1%. Our model significantly outperforms
RT-DETR in terms of detection accuracy and speed, and



2538 Jianwei Yang et al.

it achieves the highest detection accuracy and the fastest
detection speed, as well as exhibits greater robustness and
environmental adaptability in the same volume. In the fu-
ture, we aim to enhance the algorithm’s ability to adapt to
various environments by improving the dataset. This will
involve increasing both the quantity and quality of data,
specifically focusing on wind turbine blade defects in dif-
ferent scenarios. The deployability, inference accuracy, and
speed of the transformer-based visual transformer inspec-
tion model will be further enhanced to ensure its effective
application in wind turbine blade defect detection.
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