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Optimizing Heating Load Prediction For Enhanced Energy
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Energy conservation and emissions reduction are pivotal goals that hinge on precise energy consumption
estimating and the assessment of retrofit options. Prioritizing energy-efficient practices in building management
has gained significance in both theoretical research and practical applications. This ongoing research seeks
to deliver a comprehensive solution by amalgamating advanced optimization algorithms with meticulous
prediction of heating load (HL), addressing the pressing need for accuracy in this domain. The investigation
delves into the intricate realm of HL systems, where the intricacies of energy optimization present diverse
challenges necessitating thorough exploration and innovative problem-solving approaches. Two meta-heuristic
techniques, the Adaptive Opposition Slime Mould Algorithm (AOSMA) and the Snake Optimizer (SO), have
been combined to improve the accuracy of the K-Nearest Neighbour (KNN) model. These algorithms scrutinize
HL data collected from various soil types via prior stability tests to validate the models. Three unique models
are presented in the study: KNSO, KNAO, and an independent KNN model. All three models provide insightful
information for accurate HL prediction. Notably, the KNAO model is a standout performance with an RMSE
value of 0.8003 and an R2 value of 0.993 which is remarkably low. These results underscore the effectiveness of
the KNAO model in predicting HL outcomes with remarkable accuracy.
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1. Introduction

In today’s society, the building sector occupies a prominent
position as a significant energy consumer and producer of
carbon dioxide emissions. Due to this industry’s high en-
ergy requirements, experts are adamant about the need for
energy conservation. Within buildings, heating consumes
a sizable portion of this energy [1, 2]. For energy modeling,
it is essential to predict a building’s energy usage precisely,
but this approach frequently underestimates the perfor-
mance of actual buildings [3]. To estimate the amount of
energy used in buildings, traditional energy models use
engineering calculations and physical laws. These models
are suitable for preliminary analysis [4]. However, these
models frequently show a significant discrepancy between
their predictions and actual energy consumption, occasion-

ally even doubling or tripling the estimates. Numerical
simulation methods are used to simulate building energy
use to deal with this problem. These simulations are useful
for providing insights, but they fall short of capturing the
nuances of the real world [5, 6].

Artificial intelligence (AI) and machine learning (ML)
are then applied in this situation. Simulators can assist in
overcoming the difficulties involved in implementing ML
and AI models for improving building energy efficiency by
carefully analyzing the limitations of prior research [7]. The
prediction of heating load (HL) and total building energy
consumption may be transformed by ML and AI models
[8, 9].

More accurate energy forecasts are made possible by
these models’ abilities to analyze sizable datasets, identify
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patterns, and adjust to the complexities of the real world.
To make sure that buildings are secure, energy-efficient,
and comfortable, the heating, ventilation, and air condi-
tioning (HVAC) industry is essential [10, 11]. Within this
sector, the crucial subfield known as HL focuses on heating
systems and the parts that make them up [12]. A wide
range of heating technologies are included in HL, includ-
ing conventional ones like furnaces and boilers, as well as
cutting-edge ones like heat pumps, radiant heating, and
solar heating. It is impossible to overstate how important
HL is given that heating can consume up to 30% of a build-
ing’s energy and is necessary for maintaining comfortable
indoor environments, especially in colder climates [13, 14].

The healthcare industry has advanced significantly
thanks to a growing focus on sustainability and energy
efficiency. Due to this, high-efficiency heating systems,
smart thermostat integration for precise temperature con-
trol, and improved insulation techniques to reduce heat loss
have all been developed [15]. Additionally, eco-friendly
alternatives like solar and geothermal heating have gained
popularity as eco-friendly alternatives, minimizing the en-
vironmental impact of heating systems [16]. To ensure op-
timal performance and energy savings, experts in the HL
sector are crucial in designing, installing, and maintaining
these heating systems. The HL industry is still developing
as the world struggles with the effects of climate change
and the pressing need for energy conservation [17, 18]. It
aims to offer effective and environmentally friendly heating
solutions to the construction sector. Since they enable more
precise predictions, improved energy management, and
increased sustainability in the area of heating and building
energy consumption, ML and AI are expected to play a
transformative role in achieving these goals [19, 20].

Renowned innovators Kim and Cho [21] have pioneered
a groundbreaking neural network aimed at revolution-
izing the prediction of residential energy consumption.
Their inventive model ingeniously combines Long Short-
Term Memory (LSTM) and Convolutional Neural Network
(CNN) architectures, effectively capturing spatial and tem-
poral intricacies. This neural network emerges as a superior
performer, surpassing conventional forecasting methods
and offering unparalleled accuracy in predicting electric
energy consumption for residential spaces. The proposed
CNN-LSTM neural network, specifically tailored for hous-
ing energy consumption forecasting, stands as a testament
to their visionary approach. In tandem, Moradzadeh et al.
[22] contribute to the field by predicting heating and cool-
ing loads with Support Vector Regression (SVR) and Multi-
layer Perceptron (MLP) models. Notably, the MLP method
achieves an outstanding R-value of 0.9993 in predicting

HL. This research introduces an advanced methodology
that utilizes artificial neural networks and ML applications,
specifically MLP and SVR techniques, to forecast heating
and cooling loads and optimize energy consumption in res-
idential buildings. These technological strides collectively
affirm the transformative potential of advanced computa-
tional methods in elevating the precision and efficiency of
residential building energy consumption predictions. In
yet another important study, Roy et al. [23] introduced a
deep neural network (DNN) model specifically designed
to forecast the cooling and heating demands of residen-
tial buildings. In addition, minimax probability models,
machine regression (MPMR), gaussian process regression
(GPR), and gradient-boosted machine (GBM) were assessed
in this research in relation to the DNN model. When it
came to estimating cooling and heating loads, the DNN
and GPR models clearly showed the most variation ac-
counted for (VAF). Afzal et al. [24] addressed the difficult
problem of predicting building energy consumption in a
previous study, with a focus on heating and cooling applica-
tions. To carefully adjust and improve the hyperparameters
related to the MLP model, their approach combined eight
meta-heuristic algorithms with multilayer perceptron neu-
ral networks. The results of their exhaustive analysis were
astounding: the MLPPSOGWO model, which stands for
MLP-Particle Swarm Optimization-Grey Wolf Optimizer,
had the greatest overall R2 values (0.998) for the heating
load. It continuously exhibits the highest level of preci-
sion, accuracy, and computing efficiency, making it the top
performer.

In this scholarly investigation, an innovative ML and
AI methodology is introduced. The primary objective of
this approach is to attain the utmost precision and opti-
mization in predictive outcomes. This is achieved through
the meticulous customization of a hybridization method,
strategically devised to amplify the efficacy of K-nearest
neighbor (KNN)–based models, thereby ensuring the high-
est degree of reliability in prognostications. Pioneering
hybrid models signify a noteworthy departure from con-
ventional methodologies, establishing new benchmarks in
predictive analytics. Thorough evaluations have been rig-
orously conducted to objectively evaluate their capabilities,
encompassing both autonomous and hybrid configurations.
This multifaceted approach has been instrumental in miti-
gating potential biases inherent in results, thereby affording
a more nuanced perspective on the effectiveness of models.

Furthermore, a conscious decision was made to har-
ness the unique strengths of two distinct optimization tech-
niques, namely the Snake Optimizer (SNO) and the Adap-
tive Opposition Slime Mould Algorithm (AOSM), in the
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Table 1. The statistical properties of the input variable of heating

Variables
Indicators

Category Min Max Avg St. Dev.
Relative Compactness Input 0.62 0.98 0.764 0.106

Surface Area Input 514.5 808.5 671.7 88.09
Wall Area Input 245 416.5 318.5 43.63
Roof Area Input 110.25 220.5 176.6 45.17

Overall Height Input 3.5 7 5.25 1.751
Orientation Input 2 5 3.5 1.119

Glazing Area Input 0 0.4 0.234 0.133
Glazing Area Distribution Input 0 5 2.813 1.551

Heating Output 6.01 43.1 22.31 10.09

formulation of hybrid models. This strategic choice lever-
ages the distinct attributes of each optimizer, thereby en-
hancing the overall performance of predictive systems. The
research stands as a testament to the unrelenting pursuit
of excellence in predictive analytics, auguring a promising
trajectory in the domain of HL prediction.

2. Materials and methodology

2.1. Data gathering

Solid and trustworthy data is essential to ensuring the va-
lidity and effectiveness of the methods introduced in this
study. This study used the data used to train the intelligent
models from published research. This data offers the vital
information required to put the suggested strategies into
practice and assess how well they foresee the heating re-
quirements of buildings. Here is a summary of the main
ideas raised:

2.1.1. Data Partitioning

To ensure the validity and efficacy of the study’s ap-
proaches, the data was divided into three subsets:

• Training Set (70%): This subset, consisting of 70% of
the data, is used to train the predictive model.

• Validation Set (15%): This subset, consisting of 15% of
the data, is used to fine-tune model parameters and
prevent overfitting.

• Testing Set (15%): This subset, also 15% of the data, is
kept separate to evaluate the model’s performance on
unseen data.

2.1.2. Input Variables

A KNN model was used in the study to forecast Heating be-
havior. Eight important energy production input variables
were taken into account for this:

• Relative Compactness: The surface area-to-volume ra-
tio measures a building’s compactness, with higher
values indicating more efficient designs.

• Surface Area: The total exterior surface area is crucial
for determining the heat exchange between the build-
ing and its surroundings.

• Roof Area: Roof area refers to the surface area of a
building, influencing heat absorption and insulation,
crucial for heating.

• Wall Area: The wall area, which signifies the surface
area of a building, is significantly influenced by the
material and insulation used in its walls.

• Orientation: Building orientation influences sunlight
and solar heat gain, affecting heating requirements.

• Overall Height: The variable pertains to the height of a
building, as taller structures may have varying heating
requirements due to variations in air circulation and
temperature distribution.

• Glazing Area: The glazing area, including windows,
frame, and sash components, is influenced by the type
and quality of glazing, which affects heat transfer, in-
sulation, and natural lighting.

• Glazing Area Distribution: The arrangement of win-
dows within a building significantly impacts its expo-
sure to sunlight and outdoor conditions.

2.1.3. Dataset

This investigation utilizes a continuation of a previous re-
search dataset for training intelligent models, which is cru-
cial for implementing strategies and evaluating their ability
to predict building heating needs.

2.1.4. Statistical Analysis

The study conducted a statistical analysis of the dataset,
using metrics containing averages, standard deviation, min-
imum, and maximum values to understand its characteris-
tics and distribution. Table 1 displays the statistical proper-
ties of both input and output variables, while Fig. 1 depicts
a histogram illustrating their relationship.
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The study utilizes an energy production dataset for train-
ing, validation, and testing a KNN model for predicting
building heating behavior, utilizing statistical analysis for
better understanding.

Fig. 1. The histogram illustrates the relationship between
the input and output variables

2.2. K-nearest neighbor’s (KNN)-based

According to the input that occurs the most frequently from
K data points closest to the test point, the KNN algorithm
estimates outcomes [25]. It is critical to handle the nor-
malization of these parameters employing Eq. (1) prior to

applying the process.

xnormalization =
x − Min

Max − Min
(1)

Subsequently, the test and data points’ Euclidean dis-
tance is calculated by Eq. (2).

Hxi, xj =
m

∑
h=1

x(h)i − x(h)
2

1
2

j (2)

Utilizing the Euclidean distance and m as the number of
argument points, Eq. (2) defines the distance H between the
original data points (xi) and the test point

(
xj

)
. By Eq. (3),

that is essential for modifying the Euclidean distance for
all parameters to remove the inconsistent effects of indoor
thermal parameters on thermal comfort, as different pa-
rameters have different influences on thermal comfort even
when the same value is altered [26].

Hxi, xj =
m

∑
h=1

wh ∗ x(h)i − x(h)
2

1
2

j (3)

The equation provides the weight (wh) allocated to each
indoor thermal parameter that
affects thermal comfort. To find the K data points that are
closest to the test point, distances are computed. The input
that appears the most often among these K data points is
then considered to represent the feedback provided by the
participants at the current test point. The K value, which
determines the number of required dataset points, may
be found by crossvalidation. Selecting a K value that is
halfway between the two extremes is essential. If K is too
small, the model could be very sensitive to sample points
around the test point, which would result in an excessive
quantity of noise point interference. However, the accuracy
of the model may decrease if K is set too high [27]. In Fig. 2,
the KNN flowchart is displayed.

2.3. Snake optimizer (SO)

The snakes’ mating rituals serve as an inspiration for
the SO algorithm. When it is cold outside, and there is
food, animals mate. Otherwise, the snakes concentrate
on finding food or eating what they already have. The
search process is divided into two phases based on
this information: exploitation and exploration. When
environmental factors like food and cold places are absent,
the snake searches for food in its surroundings during the
exploration phase [28].

- Initialize
As with all metaheuristic algorithms, SNO initiates by

creating a random population distributed uniformly to
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Fig. 2. The flowchart of the KNN model

kickstart the optimization process. The following Eq. (4)
yields the initial population:

xi = xmin + rand × (xmax − xmin) (4)

The position of the ith individual, xi, can be determined
using the equation, where rand is a random number
between 0 and 1 , and xmax and xmin represent the upper
and lower bounds of the problem, alternatively [28].

- Search Phase
When F is less than 0.25 , the snake explores by adjusting

its position based on its current location and selecting a
random point. To model food quality, temperature, and the
search phase, the following calculations can be employed
by Eqs. (5) to (7):

F = s1 × exp
(

r − R
R

)
(5)

Temp = exp
(
−r
R

)
(6)

Xi(t + 1) = Xrand (t)± s2 × B

× ((Xmax − Xmin)× rand + Xmin)
(7)

In the context presented, the constants s1 and s2 are de-
fined as 0.5 and 0.05, respectively. Here, r represents the
current repetition, while R signifies the maximum number
of repetitions. Additionally, Xrand denotes the randomly
determined position, and rand signifies a randomly gen-
erated number ranging from 0 to 1 . The ability to locate
food, denoted as B, is further elaborated as follows:

B = exp
(
−qrand

qi

)
(8)

In this context, qrand represents the fitness of Xrand ,
while qi denotes the fitness of the individual at the i− th
position.

- Exploitation phase
When both F is greater than 0.25 , and the temperature

exceeds 0.6 , the snake’s movement will be exclusively
directed toward the food source. This movement can be
quantified through the following calculation by Eq. (9):

Xi,j(t + 1) = Xfood ± s3 × Temp

× rand ×
(

Xfood − Xi,j(t)
) (9)

In this context, Xi,j represents the position of the snake,
Xfood denotes the optimal position and s3 corresponds to
a constant value of 2 . When the temperature falls below
0.6 , the snake enters either the fight mode or the mating
mode, which can be defined as per Eq. (10):

Xi(t + 1) = Xi + s3 × A × rand× (F × Xbest − Xi(t))
(10)

In this scenario, Xi refers to the position at the i − th
iteration, Xbest signifies the most optimal position, and A
represents the capability to engage in combat. The compu-
tation of A can be expressed as follows:

A = exp
(
−qbest

qi

)
(11)

In this context, qbest represents the highest fitness value,
while qi denotes the fitness of the individual. The process
of mating mode can be determined through the following
calculation:

Xi(t + 1) = Xi + s3 × G × rand× (F × Xi(t)) (12)

In this context, G represents the mating capability. This
can be quantified using the following calculation:

G = exp
(
−qi
qi

)
(13)

Upon successful egg hatching, the protocol involves
selecting the least proficient snake and replacing it:

Xworst = Xmin + rand × (Xmax − Xmin) (14)
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Here, the worst individual is indicated by Xworst .
The directional flag operator ±, often referred to as the

diversity factor, possesses the capacity to enhance or di-
minish the positional solution, thereby increasing the like-
lihood of the agent altering its direction and effectively
exploring the given space from various perspectives. This
parameter is of the utmost importance in meta-heuristic
algorithms, which are inherently built to include random-
ness for enhanced diversification. The flowchart of the SO
is displayed in Fig. 3.

Fig. 3. The SO flowchart

2.4. Adaptive Opposition Slime Mould Algorithm
(AOSM)

The SMA, a stochastic optimizer, uses the plasmodial slime
mold oscillation mode to choose the best answer to a given
function. The AOSM method, on the other hand, adapts the
technique behavior of slime mold to the environment by
merging opposition-based learning and adaptive decision-
making processes. This leads to better solutions for a
broader set of challenges. These algorithms are illustra-
tions of bio-inspired optimization techniques, which use
biological processes as a model to address difficult opti-
mization problems more effectively. Oscillation mode and
positive-negative feedback are used by slime mold to de-
termine the optimal path for food contact. If i is an element
of the range [1, N], then Xi =

(
x1

i , x2
i , · · · , xd

i

)
represents

the location of the ith slime mold in d-dimensions. For ∀i ∈
[1, N], the the ith slime’s odor or fitness is represented by
f (Xi). Assume that the search space has N slime molds,
with (UB) serving as the upper boundary and ( LB) as

the lower boundary. As a result, the following may be
used to express the fitness and location of N slime molds
at iteration t in Eqs. (15) and (16):

X(t) =


x1

1 x2
1 . . . xd

1
x1

2 x2
2 . . . xd

2
...

...
...

...
x1

n xd
n · · · xd

n

 =


x1
x2
...

xn

 (15)

f (x) = [ f (x1) , f (x2) , . . . , f (x3)] (16)

In SMA, Eq. (17) is used to update the slime mold’s
location for the next iteration (t+ 1).

Xi(t+ 1) =

{ rand. (UB − LB) + LB, r1 < z
Xlb(t) + vb · (W · XA(t)− XB(t)) , r1 ≥ δ and r2 < pi

vc · xi(t), r1 > δ and r2 ≥ pi
(17)

The random velocity factors are vb and vc, and the
weight factor is W. The person in the local population
with the highest fitness value is indicated by the symbol
XLB. From the existing population, two slime molds, XA

and XB, are chosen at random to represent [29]. δ repre-
sents the fixed chance of the slime mold initializing at a
random search position, which is 0.03. The interval [0, 1]
contains the produced random numbers r1 and r2. The best
individual or its location is used for the next iteration based
on pi, the threshold value of the ith slime mold. UB and LB
are the upper and lower boundary, and rand is the random
number. In this way, it may be calculated by Eq. (18):

Pi = tanh | f (Xi)− fGbest | , ∀i ∈ [1, N] (18)

Eq. (19) determines the global best fitness value ( fGbest ),
which is dependent on the global best position ( XGbest ).
The fitness value of the ith slime mold, Xi, is represented
by f (Xi)

fGbest = f (XGbest ) (19)
To get the weight W for N slime molds in the current

iteration t, apply Eq. (20) as follows:

W(sortInd f (i)) =


1 + rand · log

(
fLbest − f(Xi)

fLbest − fLworst
+ 1
)

1 ≤ i ≤ N
2

1 − rand log
(

fLbest − f(Xi)
fLbest − fLworst

+ 1
)

N
2 < i ≤ N

(20)

The fitness values are sorted in ascending order while
solving a minimization problem, as seen below. Next, the
weight W is calculated using the provided equation, where
fLworst denotes the local worst fitness value and fLbest de-
notes the value of local best fitness. rand is a random num-
ber between 0 and 1 . Based on the fitness value f , which is
specified in Eq. (21), both of these values are obtained.[

sort f , sortlnd f

]
= sort( f ) (21)

To ascertain the best local fitness value fLbest and the
related local best individual XLbest . Take the actions listed
below:

fLbest = f (sortf(1)) (22)
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XLbest = x( sortf (1)) (23)

Use the following procedures to find the local worst
fitness value f LW :

fLworst = f (sort f (N)) (24)

A continuous uniform distribution in the intervals
[−b, b] and [−c, c] yields the random velocity factors Vb
and Vc, respectively. Use the following process to find the
values of b and c for the current iteration, t :

b = arctanh
(
−
(

t
T

)
+ 1
)

(25)

and

c = 1 − t
T

(26)

Opposition-based learning ( OBL ) is used to improve
convergence and prevent becoming trapped in local min-
ima. For every slime mold (i = 1, 2, · · · , N) in the search
space, the position Xni is compared with its exact opposite
position Xoi in OBL. The location is updated for the next
iteration based on an estimate of the difference. Using the
following formula, the predicted value of Xoi for the i − th
slime mold in the j − th dimension is determined:

Xoj
i(t) = min (Xni(t)) + max (Xni(t))− Xnj

i(t) (27)

where i = 1, 2, . . . , N and j = 1, 2, . . . , d.
The ith slime mold position selected for the minimiza-

tion issue is denoted by Xsi.

Xsi(t) =

Xoi(t) if f (Xoi(t)) < f (Xni(t))

Xni(t) if f (Xoi(t)) ≥ f (Xni(t))
(28)

In cases when the slime mold is following a previously
investigated nutrition route, an adaptive choice technique
is employed. This approach takes into account the present
fitness

value f (Xni(t)) in addition to the matching historical
fitness value f (Xi(t)). The adaptive decision method of
AOSM incorporates OBL to allow for more exploration
if needed. This approach, which can be expressed as fol-
lows, determines the revised location for the subsequent
iteration:

Xi(t + 1) =
{

Xni(t) if f (Xni(t)) ≤ f (Xi(t))
Xsi(t) if f (Xni(t)) > f (Xi(t))

(29)

Through the application of an adaptive decision ap-
proach, the AOSM technique efficiently improves the per-
formance of SMA by determining when OBL is required
along the search trajectory. Furthermore, Fig. 4 displays the
AOSM flowchart.

Fig. 4. Flowchart of AOSM

2.5. Performance evaluation methods

This article employes a variety of metrics for assessing the
models, containing the previously mentioned Normalized
Root Mean Squared Error (NRMSE), Correlation Coeffi-
cient

(
R2), Mean Absolute Error (MAE), Median Absolute

Percentage Error (MDAPE), and Root Mean Square Error
(RMSE). Excellent performance of the algorithm during the
phases of training, validation, and testing is indicated by
a high R2 value. Lower RMSE and MAE values are better
since they indicate less model error. These measures are
calculated using Eqs. (30) to (34).

- Coefficient of determination

R2 =

 ∑W
i=1
(
hi − h̄

)
(qi − q̄)√[

∑W
i=1 (hi − h)2

] [
∑W

i=1 (qi − q̄)2
]


2

(30)

- Root Mean Square Error

RMSE =

√√√√ 1
W

W

∑
i=1

(qi − hi)
2 (31)

- Mean Absolute Error

MAE =
1

W

W

∑
i=1

|qi − hi| (32)

- Normalized Root Mean Squared Error

NRMSE =
RMSE
qi − q̄

(33)

- Median Absolute Percentage Error

MDAPE = 100 × median

(
|qi − q̄|∣∣hi − h̄

∣∣
)

(34)
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Where qi and hi determine the experimental and pre-
dicted values, alternatively. The mean values of the pre-
dicted and experimental values are shown with h̄ and q̄,
alternatively, W defines the number of samples being con-
sidered.

3. Results and discussion

3.1. Hyperparameter and Convergence

Table 2 displays the hyperparameter results for the KNN
model, with particular attention to the KNAO and KNSO
variants. The values given to the hyperparameters have an
impact on the precision and effectiveness of the predictions,
and they are crucial in determining how well the model
performs. The KNAO and KNSO models for the n _neigh-
bors hyperparameter share a value of 1 . This parameter
highlights the importance of local data points in the model-
ing process by determining the number of neighbors taken
into account when making predictions. Turning now to
the leaf_size hyperparameter, the KNSO model has a leaf
size of 435 , whereas the KNAO model has a value of 877
. This parameter affects how the KD-tree is built, which
affects how efficiently queries are executed. Lastly, there
are differences between the two models in the p hyperpa-
rameter, which stands for the Minkowski distance’s power
parameter. KNSO chooses a value of 339 , while KNAO
uses a value of 1 , stressing the Manhattan distance. The
variations in hyperparameter values highlight the careful
adjustments made to maximize each model’s prediction
of heating load performance. This table offers insightful
information about the customized hyperparameter config-
uration for the KNN models that are being examined.

Table 2. The results of hyperparameters for KNN

Hyperparameter Models
KNAO KNSO

n_neighbors 1 1
leaf_size 877 435

p 1 339

The convergence (RMSE) of the KNAO and KNSO hy-
brid models is shown in Fig. 5. The RMSE values of the
two models as a function of iteration number are displayed
in the vertical line plot. The RMSE represents the average
difference between the expected and actual values. Lower
RMSE values indicate greater accuracy. The graph indi-
cates that the KNAO model has better convergence than
the KNSO model. This suggests that a lower RMSE value
is reached by the KNAO model more quickly. Put dif-
ferently, the KNAO model exhibits enhanced efficacy in

Fig. 5. Vertical line plot for convergence of hybrid models

learning from the training set and yields higher precision
predictions. The inclusion of the SO and the AOSMA meta-
heuristic algorithms in the KNAO model is responsible for
its superior convergence. With the help of these algorithms,
the search space is more thoroughly explored, enabling the
KNAO model to determine the ideal KNN model parame-
ters. The study’s findings show that the KNAO model is
a viable method for estimating heating load. The KNAO
model’s superior convergence suggests that it can be used
to predict heating loads more accurately, which can lead to
increased building energy efficiency.

3.2. Evaluation of developed models

The evaluation of heating load prediction entails a struc-
tured four-stage process: training (70%), validation (15%),
test (15%), and an overarching assessment (100%). Within
this framework, Table 3 and Fig. 6 comprehensively ana-
lyze the performance of three distinct K-nearest neighbors
(KNN) models: KNN, KNAO, and KNSO, with a focal
point on their predictive capabilities regarding heating load.
These stages collectively provide insights into the efficacy
and suitability of each model for precise heating load pre-
dictions, facilitating informed decision-making in various
applications.

• RMSE and R2 : In predictive accuracy, two pivotal
metrics, RMSE and R2, were scrutinized. The KNAO
model shone brightly during the training phase, dis-
playing the lowest RMSE and the highest R2 values (
0.800 and 0.994 , respectively). These statistics under-
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Table 3. The result of developed models

Model Section
Index values

RMSE R2 MAE NRMSE MDAPE

KNN

Train 1.599 0.976 1.001 0.003 2.430
Validation 2.195 0.951 1.401 0.019 3.706

Test 1.747 0.970 1.210 0.015 3.710
All 1.723 0.971 1.092 0.002 2.704

KNAO

Train 0.800 0.994 0.705 0.001 3.132
Validation 1.305 0.983 1.038 0.011 4.437

Test 1.306 0.983 1.114 0.011 4.640
All 0.979 0.991 0.816 0.001 3.556

KNSO

Train 1.157 0.987 1.001 0.002 4.600
Validation 1.435 0.981 0.916 0.012 2.635

Test 1.636 0.977 1.085 0.014 2.845
All 1.283 0.984 1.001 0.002 3.889

score its exceptional fit and predictive prowess during
this phase. In contrast, the KNN model demonstrated
consistent performance across all three phases, a testa-
ment to its reliability in RMSE and R2 values.

• MAE and NRMSE: Expanding the scope of assess-
ment, MAE and NRMSE were analyzed. Surprisingly,
the KNN and KNSO models presented higher error
rates across all phases. However, the KNAO model
emerged as the standout performer during the train-
ing phase, boasting a significantly lower MAE of 0.705
and an exceptionally low NRMSE of 0.001.

• MDAPE: The MDAPE metric was pivotal in gaug-
ing predictive accuracy. Notably, the KNN model
consistently exhibited the highest MDAPE across all
phases, affirming its superior predictive accuracy. It
is worth noting that the KNAO model showcased a
lower MDAPE value exclusively during the training
phase, indicating its competitive edge in this specific
context.

In essence, the selection among the KNN, KNAO, and
KNSO models depends on the unique demands of each ap-
plication. The KNAO model stands out for its exceptional
predictive accuracy, particularly during training. Con-
versely, the KNN model offers consistent performance and
precision in estimating absolute errors across all phases.
Meanwhile, the

KNSO model strikes a harmonious balance between
accuracy and predictive power. This thorough assessment
empowers decision-makers to choose the optimal model for
precise heating load predictions, tailored to their priorities
of precision, reliability, or a blend of both.

The study assesses the efficacy of hybrid models
throughout the training, validation, and testing phases, as

illustrated in the scatter plot depicted in Fig. 7. Notably, the
KNAO model demonstrates robust accuracy consistently,
displaying minimal deviation between predicted and ob-
served values. Conversely, both the KNN and KNSO mod-
els exhibit comparable performance, albeit with slightly di-
minished precision and increased inaccuracy, as evidenced
by their data points positioned further from the centerline.
This wider dispersion implies a marginally lower precision
and heightened inaccuracy compared to the KNAO model.

A line plot of the error percentages related to the de-
veloped models is shown in Fig. 8. KNAO has the lowest
error of 19.81, as the graph demonstrates, with the majority
of values clustered around the 10% range. The error per-
centages for KNN and KNSO, on the other hand, exhibit
a broader distribution, with a significant concentration of
values greater than 33.33% and 37.14%. The fact that the
KNN and KNSO distributions are right-skewed is signifi-
cant because they indicate that some dataset points have
noticeably higher error rates. This result demonstrates the
high accuracy of KNAO and demonstrates how the devel-
oped models’ error percentage distributions are displayed
in the graph.

Fig. 9 displays a violin plot with box plots representing
the error percentages for the models under examination.
The graph effectively accentuates the unique characteristics
of each model. KNAO exhibits a sharply peaked normal
distribution with minimal spread, resulting in an average
error range between −20% and 20%. In contrast, KNN dis-
plays greater dispersion and a flatter normal distribution
across all three phases, but it performs optimally when its
error range falls within −25% to 35%. KNSO stands out
due to its pronounced and varied errors, including an out-
lier data point contributing to an error range of −22% to
30% of the dataset. Conversely, KNN demonstrates a more
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Fig. 6. The radar plot for presented metrics

evenly distributed error pattern than the other two models,
with a reduced occurrence of errors clustering around zero.

Fig. 7. Plotting developed hybrid models’ dispersion

Notably, the results of this study unequivocally establish
KNAO as the most effective model, underscoring its supe-
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Fig. 8. The line plot is the basis for the models’ error
percentage

rior ability to minimize dispersion and reduce error rates
consistently across all scenarios.

Fig. 9. The violin with box plot errors of proposed models

In Fig. 10, a Taylor diagram is used to compare the
performance of several models. The study assesses three
models, KNN, KNAO, and KNSO for predicting heating
load. The diagram’s horizontal axis shows the standard
deviation of expected values from each model, while the
radial axis shows the correlation coefficient between ob-
served and anticipated values. Distance from the origin
indicates a higher standard deviation in model predictions.
Closer to the circle, with a correlation value of 1, indicates
better model performance. The graphic shows that the
KNAO model has the greatest correlation coefficient (0.99)
and a standard deviation of 0.5. The KNAO model shows
a great correlation with observed values and low variance
in forecasts.

In contrast, the KNSO model has a correlation value of
around 0.95 and a standard deviation approaching 1. The
KNN model has the lowest correlation coefficient (0.9) and
the biggest standard deviation (1.5). Overall, the graphic
shows that the KNAO model predicts heating load better
than the other three models.

Fig. 10. The Taylor diagram of related models

4. Conclusion

This research delves deeply into machine learning (ML)
approaches, specifically focusing on K-Nearest Neighbors
(KNN) based models, with the primary goal of enhancing
energy efficiency and optimizing heating systems in res-
idential buildings. The overarching aim was to achieve
highly accurate heat load forecasts in home environments.
The study also delved into optimization methods, particu-
larly investigating the Adaptive Opposition Slime Mould
Algorithm (AOSMA) and the Snake Optimizer (SO) to fur-
ther refine and improve these KNN models. Through this
investigation, several significant findings have come to
light: Firstly, the KNN models have demonstrated their in-
valuable utility in estimating heat load in residential build-
ings. Trained on relevant data, these models showcased
a remarkable ability to make precise predictions, provid-
ing crucial insights into the energy requirements of such
structures.

Their simplicity and interpretability make them particu-
larly appealing for practical applications. The assessment
process, covering training, validation, testing, and com-
prehensive evaluation stages, rigorously analyzed each
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model’s performance using various metrics such as RMSE,
R 2, MAE, NRMSE, and MDAPE. These metrics offered
nuanced insights into the predictive proficiency and accu-
racy of the models across different evaluation phases. Dis-
tinct performance characteristics emerged for each model.
The KNAO model stood out as a top performer during
the training phase, demonstrating the lowest RMSE value
0.8003 of and the highest R2 value of 0.993 , indicating
exceptional predictive capabilities. Conversely, the KNN
model showed consistent performance across all phases,
showcasing reliability in estimating heating load but with
scope for improvement in predictive accuracy. The KNSO
model struck a balance between accuracy and predictive
power, delivering competitive performance across vari-
ous metrics. The integration of optimization algorithms,
especially with the KNN model using AOSMA, yielded
significant improvements in accuracy and reduced predic-
tion errors. This integration holds promise for enhancing
predictive performance, leading to more sustainable and
efficient home heating systems.

In conclusion, combining ML techniques like KNN mod-
els with optimization algorithms such as AOSMA and SO
has the potential to revolutionize energy efficiency in res-
idential buildings. This fusion enables a sustainable and
efficient future for heating systems, paving the way for
smarter and greener living environments. Tailoring model
selection based on specific application needs further en-
hances the overall effectiveness and applicability of these
approaches in real-world scenarios.

5. Limitation

This study uses ML approaches, including KNN models,
to improve energy efficiency and optimize heating systems
in residential settings. The main goal is to anticipate heat
load in these situations accurately. Explore integrating
optimization methods like SO and AOSMA to improve
KNN model effectiveness. The study demonstrates the
reliability of KNN models in calculating heat load in resi-
dential structures. These models, trained on appropriate
datasets, provide beneficial insights into energy needs due
to their simplicity and interpretability. The use of opti-
mization techniques like SO and AOSMA enhances the
predicted accuracy of these models. When used with KNN,
AOSMA excels, achieving high precision and minimum
prediction mistakes. The ability to cluster data points and
uncover substantial correlations highlights the potential for
optimization algorithms to improve prediction capabilities.
The study suggests that integrating ML, particularly KNN
models, with optimization algorithms like AOSMA and
SO could change household energy efficiency tactics. The

success of the AOSMA concept suggests a sustainable and
efficient future for domestic heating systems. Effective heat
load prediction and system optimization can significantly
reduce energy consumption and emissions, promoting en-
vironmental sustainability and perhaps cutting homeowner
expenses. This research enables the use of modern technol-
ogy in domestic energy management, promoting a greener
and more efficient built environment.
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nomenclature

Acronyms
AI Artificial intelligent
AOSMA Adaptive Opposition Slime Mould Algorithm
GA Glazing Area
GAD Glazing Area Distribution
HL Heating load
HVAC Heating, ventilation, and air conditioning
KNN K-Nearest Neighbor
MAE Mean Absolute Error
MAPE Median Absolute Percentage Error
ML Machine learning
NRMSE Normalized Root Mean Square Error
OR Orientation
OVH Overall Height
R2 Coefficient Correlation
RA Roof Area
RCE Relative Compactness
RMSE Root Mean Square Error
SA Surface Area
SO Snake Optimizer
WA Wall Area
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