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A microgrid is a smaller-scale power system that helps integrate distributed energy generation and maximize
demand-side management utilization. This article analyzes the economic dispatch of a typical multi-carrier
microgrid with price-responsive loads in an uncertain environment. Integrating multiple energy infrastructures
under the multi-carrier microgrid is shown as an energy hub. This paper proposes a novel price-responsive load
that integrates the final price of energy of demanded loads for multiple carriers with energy market price, site
generations, and energy purchase. Also, the proposed price-responsive method is analyzed on two different DRP
models to verify the model’s effectiveness. The proposed multi-carrier microgrid is investigated considering
the uncertainties in thermal and electrical loads, solar generations, and the electricity market. Previous
investigations have optimized energy consumption from an infrastructure perspective without considering
interactions. However, this study takes into account the interaction between energy system infrastructures in
the presence of distributed energy generation and responsive loads. A series of simulations are conducted using
GAMS to develop a model for a connected microgrid that incorporates electricity, district heat networks, and
natural gas to supply multiple energy demands. Results show that the simultaneous operation of different
energy carriers and utilization of price-responsive loads resulted in lower operating costs for smart distribution
grids. Finally, the impact of uncertain parameters was assessed in the system, enhancing the optimal solution’s
trustworthiness.
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1. Introduction

Due to scientific advancement, there has been an increase
in power consumption over the last several decades, while
conventional devices have met fossil fuel constraints, com-
munity losses, and high financing expenses. To overcome
the issue, increasing the use of renewable energy resources
(RERs), for example, solar, wind turbine, and small-scale
energy sources (SSER), has resulted in reliability improve-
ment and strength expenditures discount through cus-
tomers’ engagement in demand response programs (DRPs)
[1]. Moreover, increased use of SSERs might result in tech-

nical and non-technical issues for possible future issues of
power systems [2].

Microgrid (MG) [3] is a rescue solution that addresses
the existing distribution system difficulties and many en-
ergy infrastructure interconnections. As an alternative to
large-scale power plants, MGs are expected to offer grid
operators and customers greater energy utilization effi-
ciency, enhanced power quality and local dependability,
fewer power losses, and greener energy [4]. The micro-
grid subject was presented to overcome existing network
difficulties and improve the system’s performance. It is
projected that the operation and control of the systems will
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be improved with these networks’ consideration. An MG
should be capable of reforming to the optimum state when
a system malfunction has occurred [5]. Small-scale energy
zones (SSEZs) or multi-carrier microgrids (MCMGs) are
the energy carriers that make up microgrids.

Principal to the functioning of the multi-carrier micro-
grid is the optimum use of resources and components. In
past research, the system operation with diverse energy
facilities, e.g., natural gas, electricity, heat, etc., were in-
vestigated independently, which hindered the optimum
operation. However, the greater effect of SSERs on gas
usage has boosted energy carriers’ use of network services
[6]. To achieve this objective, the idea of an energy hub sys-
tem was presented to introduce multi-carrier systems and
explore the energy effect on others in a variety of forms
[7]. The studies primarily concentrate on several opera-
tional topics, such as economic dispatch [8], power flow
and optimum gas [9, 10], unit commitment [11, 12], and
optimal coupling of energy carriers [13]. As an example of
a structure for the EH, the MCMG has been examined in a
few studies [14] to integrate different energies.

Nowadays, the optimal performance of different energy
carriers is carried out individually, although most of the cur-
rent energy foundations face deterioration. However, con-
gested transmission networks and growth in demand have
prompted researchers to investigate alternatives for future
vitality management frameworks. Considering MCMGs
as an energy hub system is one method for ensuring the
effective exploitation of available foundations. It suggests
that rather than examining various energy infrastructures
individually, diversified energy infrastructures should be
reviewed and operated on simultaneously [15].

The RERs uncertainty, e.g., solar irradiance and wind
speed, was explored in [16]. Besides, the uncertainty of
load was investigated in [17]. A modern procedure, us-
ing the Beta likelihood dispersion, for the era of the total
request designs through modeling the energy utilization
behaviour of a bunch of private buyers is displayed in
[18]. A novel robust optimization approach is created to
show multi-objective MG venture costs [19]. A show for
ideal operations of an MG, counting generator planning
choices, line network choices, control exchange between
fundamental and MG, sun-powered vitality integration,
and stockpiles, is created [20].

A two-stage, robust optimization system oversees the
solar power uncertainty. At that point, a reformulation
was made for the min-max issue to apply the Column-and-
Constraint-Generation calculation. Reference [21] analyzes
a household’s present and future electricity demand at
rural and urban domestic in the Province of Baluchistan in

Pakistan for three years. The results confirm that RERs will
supply the demand due to the greater potential of solar
and wind.

Bellman’s dynamic algorithm for optimal energy man-
agement in a standalone microgrid is presented [22]. The
cost function consists of the cost of operations in generators
and the cost of load shedding. The Pontryagin maximum
fundamental is utilized by extracting five optimal points to
handle the computational time of the dynamic algorithm.
Reference [23] introduces an optimal generation dispatch
in a microgrid considering the WT, generators, PV systems,
storages, and plug-in EVs. The proposed optimization
algorithm is computed utilizing hybrid differential and har-
mony search algorithms. The results show that microgrids
are more stable considering storage systems and plug-in
EVs. Several methods, such as scenario-based [24, 25], or
sensitivity analysis [26], are utilized to handle uncertain-
ties.

The purpose of [27] is to address the issue of economic
dispatch in the shape of a multi-objective problem in which
the operation cost is not the only consideration. However,
the emission in considering plug-in EVs is included. Sim-
ilarly, Zah et al. presented a multi-objective optimization
in which the battery life cycles have been considered in the
extracted model in the cost function [28]. Optimal manage-
ment of the resources to respond to demands is the main
problem in the operation of microgrids [29]. To realize this
goal, smart grid facilities to distribute energy through small
resources with a low price are considered [30]. A smart
EMS is presented for residential demands to reduce elec-
tricity bills by suitable time-scheduling in the household
devices [31]. In addition, the DR method is used to shave
the peaks. The advantage of DRP, considering the local
RERs, is the estimation of typical isolated hybrid micro-
grids [32]. Reference [33] investigates the hybrid method
for rescheduling demand-side management and generation
utilizing different DRPs in congestion management. The
paper scrutinizes the effect of DRP and RER’s uncertain
output on different parameters of the power system. The
behavior of the energy consumption from the customer’s
normal demand considering the electricity price changes
can change by DRP utilizations. The DRPs are utilized to
induce lower electricity consumption at times with high
market prices or reliability jeopardy of the system [34]. In
addition to the effect of different resources in the smart
grids in the future, the idea of DRP will include a wide
variety of loads. DRPs can be categorized into price-based
and incentive-based programs [35]. A central control sys-
tem in an energy hub system is used for control steps and
peak shaving service [36]. The study in [37] pays attention
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to DRPs to prevent carbon emissions and load participa-
tion in spinning reserve markets. References [38] presented
an optimal energy management of residential buildings
to supply controllable and uncontrollable loads under un-
certainty. Also, an optimal coalition operation of inter-
connected hybrid energy systems containing local energy
conversion technologies, renewable energy resources, and
energy storage systems has been presented in [39]. A hy-
brid interval-stochastic optimal operation framework of a
multi-carrier microgrid in the presence of hybrid electric
and hydrogen-based vehicles intelligent parking lot has
been investigated in [40].

Considering the above-mentioned studies, a local price-
responsive model for DRPs has not been extracted yet. In
this regard, this study presents a price-responsive model
for DRPs in a multi-carrier microgrid to reform the load’s
curve and also prevent excessive energy use during peak
times. The proposed model integrates the final price of
energy for responsive loads for multiple carrier systems,
energy market tariffs, on-site generations, and energy pur-
chases. The multi-carrier microgrid is pinpointed with
CHP, boilers, photovoltaic, converters, and electrical and
thermal storage units in grid-connected mode. The opera-
tional optimization of an MCMG is conducted to calculate
the optimal strategy of an MCMG considering prevailing
uncertainties, using the mixed-integer nonlinear program-
ming (MINLP) model via GAMS software. Briefly, the main
novation of this study is as follows:

• Integrating multiple energy infrastructures under the
multi-carrier microgrid is shown as an energy hub.

• Proposing a novel price-responsive load that inte-
grates the final price of energy of demanded loads
for multiple carriers with energy market price, site
generations, and energy purchase.

• Analyzing the proposed price-responsive method on
two different DRP models to verify the model’s effec-
tiveness.

• The proposed multi-carrier microgrid is investigated
considering the uncertainties in thermal and electrical
loads, solar generations, and the electricity market.

In the following table a comparison between the contri-
butions of this work with some past researches has been
performed.

The remaining sections of the paper are categorized as
follows: Section 2 presents a multi-carrier microgrid and its
mathematical model. In Section 3, the results of simulations
are provided and analyzed, and the conclusion is presented
in Section 4.

Fig. 1. The proposed MCMG structure

2. System model

An MCMG comprises a low-voltage or medium-voltage
electrical network in addition to natural heat and natu-
ral gas networks. In other words, equipment, such as co-
generation, thermal exchanger transformers, and so on,
may convert energy. In addition to converters, distributed
energy resources (DERs) such as batteries and solar sys-
tems may provide a portion of demand and considerably
influence energy cost reduction relative to the local energy
costs of carriers. DRPs may increase the network’s flexi-
bility to meet demand at a particular time. As indicated
in Figure 1, this article models a single-bus MCMG with
equipment coordination to meet different energy needs for
24 hours. The MCMG network is linked to the gas and
main electric grid, and it is believed that energy savings
and conversion are possible.

2.1. MCMG system modeling

The MCMG discussed in this article motivates the energy-
hub model illustrated in Fig. 1. The newly installed MCMG
is linked to the main natural gas and power grids. The
CHP, storage, and boilers are utilized only for supply or
storage. Here, the solar system is also included, allowing
the MCMG to sell excess power to the grid. It is also be-
lieved that price-responsive loads would flatten the curves
of loads by transferring a portion of demand to off-peak
times. The energy balancing model in the matrix’s output
and input hub ports is as follows:
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Table 1. Comparison of main contributions between some important studies

Method Contributions

Proposed method

- Integrating multiple energy infrastructures under the multi-carrier microgrid is shown
as an energy hub.
- Proposing a novel price-responsive load that integrates the final price of energy of
demanded loads for multiple carriers with energy market price, site generations, and energy
purchase.
- Analyzing the proposed price-responsive method on two different DRP models to
verify the model’s effectiveness.
The proposed multi-carrier microgrid is investigated considering the uncertainties in
thermal and electrical loads, solar generations, and the electricity market.

Reference [33]

- Investigation of the hybrid method for rescheduling demand-side management and
generation utilizing different DRPs in congestion management.
- The paper scrutinizes the effect of DRP and RER’s uncertain output on different
parameters of the power system.

Reference [31] - A smart EMS is presented for residential demands to reduce electricity bills by
suitable time-scheduling in the household devices

Reference [36] - A central control system in an energy hub system is used for control steps and peak
shaving service.

Reference [28] - Introducing of a multi-objective optimization in which the battery life cycles have
been considered in the extracted model in the cost function

Reference [37] - Focusing on DRPs to prevent carbon emissions and load participation in spinning
reserve markets

Reference [41]

- Focus on combined cooling, heating, and power microgrid to alleviate these issues.
- A multi-carrier energy storage system composed of thermal storage system, ice
storage system, and hydrogen storage system are integrated into the proposed system
to benefit from their techno-economic advantages.

Reference [42]

- Focus on the concept of hydrogen-based smart micro energy hub (SMEH)
considering integrated demand response (IDR) and fuel cell-based hydrogen storage
system (HSS).
- IDR is introduced to control consumers’ electrical and heat demand patterns.
- HSS not only can convert power from renewable energy sources (RESs) to hydrogen
(P2H) in a low electricity price period and vice versa (H2P) in a high electricity price
period but also can supply the hydrogen-based industry

Reference [43]

- Introducing an Information Gap Decision Theory (IGDT)-based model for EH
management, taking into account the demand response (DR). The proposed model is
applied to a semi-realistic case study with large consumers within a day ahead of the
scheduling time horizon.
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The storage enhances the performance of the MCMG by
preventing the wastage of energy. In [44], the advantages of

energy storage elements are exclusively investigated. The
matrix’s model of energy storage is written as follows:

[
Sc(t) 0

0 Sd(t)

]
×

[
Ee(t + 1)− Ee(t)− Estb

e
Eh(t + 1)− Eh(t)− Estb

h

]
=

[
Me(t)
Mh(t)

] (4)

To achieve sustainable storage utilization, it is necessary
to consider the initial energy levels and the stored energy
at the end of the last period within the investigation time
interval:

Ee(1) = Ee(24) (5)

Eh(1) = Eh(24) (6)
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Fig. 2. Correlation between energy prices and output and
input port

2.2. Demand response model

Due to the high costs in the energy market, users will seek
to engage in energy supply within future networks. To
avoid this problem, software allowing load reduction or
transferring to other times may be used [45]. DRPs may
be applied as a solution, categorized into two strategies:
punishment and price or incentive. Demand patterns fluc-
tuate hourly, depending on energy costs. This policy is
implemented in this article. As the energy market price
defines the prices of energy at the input port of the MCMG,
the final prices of energy (FPE) for thermal and electrical
responsive loads at the output port depend on received en-
ergy, operating strategies, and efficiencies of devices. These
final costs are modeled in Eqs. (7) and (8) according to
Fig. 2.

ρα(t) =
∑N

i=1 Pi(t) · πi(t) ·
ηi,α

ηi,α+ηi,β

Lα(t) + Dα(t) + Mβ(t)
(7)

ρβ(t) =
∑N

i=1 Pi(t) · πi(t) ·
ηi,β

ηi,α+ηi,β

Lβ(t) + Dβ(t) + +Mβ(t)
(8)

This paper utilizes two different methods of DRPs to
verify the effectiveness of the FEP as follows:

2.2.1. DRP based on elasticity matrix concept (the first model of
DRP)

Assuming the FEP for responsive loads, an elasticity matrix
is formulated in Eqs. (9) and (10). The non-diagonal ele-
ments are negative, and the diagonal elements are positive.

ELi(t) =

 eei(1, 1) · · · eei(1, 24)
...

. . .
...

eei(24, 1) · · · eei(24, 24)

 i ∈ {α, β}

(9)

ei
(
t, t′

)
=

{
t = t′ ei (t, t′) < 0
t ̸= t′ ei (t, t′) ≥ 0 i ∈ {α, β} (10)

Regarding the elasticity matrix definition, the multi-
period time-based demand response is modelled below:

Dα(t) = D0α(t) ·
[

1 + eα(t, t) · ρα0(t)− ρα0 (t′)
ρα0 (t′)

]

+ D0α(t) ·

1 +
24

∑
t′=1
t=t′

eα
(
t, t′

)
· ρα0(t)− ρα0 (t′)

ρα0 (t′)


(11)

It is noted that Eq. (12) calculates the initial energy price
for responsive loads.

ρα0(t) =
∑t Dα0(t) · πe(t)

∑t Dα0(t)
(12)

2.2.2. DRP based on shifting technique (the second model of DRP)

The DR framework of reference [36] is also used in this
study, which is outlined in Eqs. (13) to (17). Demand fluc-
tuations must be balanced regularly Eq. (14). Equations
Eqs. (15) and (16) represent the effect of registered con-
sumers engaging in DRPs on the demand share. In other
words, it determines the maximum hourly number of mov-
able demands of different users. To avoid simultaneous
upward and downward movement, Eq. (17) is necessary.

Dα(t) = D0α(t) + Dshup
α (t) + Dshdo

α (t) (13)

∑
t

Dshpp
α (t) = ∑

t
Dshdo

α (t) (14)

0 ≤ Dshn p
α (t) ≤ D0α(t) · ISshup

α (t) (15)

0 ≤ Dshdo
α (t) ≤ D0α(t) · ISshdo

α (t) (16)

0 ≤ ISshup
α (t) + ISshdo

α (t) ≤ 1 (17)

2.3. Constraints and Objective function

The total operating and maintenance (O&M) expenses are
picked as two evaluation criteria employed as the ideal
goal to be reduced, as described in Eq. (18). Considering
the problem specification stated in previous sections, the
goal function for the operation of the suggested MCMG is
precisely specified exactly as follows:
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MIN : OF =
24

∑
t=1

∑
i∈{e,g}

Pi(t) · πi(t)

− ∑
j∈{e,h}

Tj(t) · ψj(t) + Cos tmain

+
24

∑
t=1

∑
i∈{e,h}

[
Dshup

l (t)− Dshdo
l (t)

]
· ρl(t)

(18)

In this study, Eqs. (7), (8) and (18), which represent the
final costs, establish the MINLP nature of the proposed ap-
proach. The first and second terms indicate the costs asso-
ciated with energy import and export, while the third term
specifies the cost of unit maintenance. The last term is the
MCMG customers’ advantages in changing their demand
from peak periods to off-peak periods, which is only used
for the second DRP model. The goal function comprises
acquired and sold energies, O&M expenses, and energy
demand shifting costs. The objective equation specifics are
presented exactly as follows:

Cos tmain (t) =Cos tpv, main (t)

+ Cos tCHP, main (t) + C os tbo, main (t)
(19)

Cos tpv, main (t) = Popv(t)× Kpv, main (20)

Cos tCHP, main (t) = Pochp(t)× KCHP, main (21)

Cos tboiler,main (t) = Poboiler (t)× Kboiler,main (22)

Cos ttrons, main (t) = Potricns (t)× Ktrcons, main (23)

Amounts of purchased electricity, gas, selling electricity
and heat power to the network and capacities of elements
are respectively constrained as follows:

0 ≤ Pi(t) ≤ Pmax
i i ∈ {e, g} (24)

0 ≤ Tj(t) ≤ Tmax
k j ∈ {e, h} (25)

0 ≤ POchp(t) ≤ POchp,max (26)

0 ≤ Po boiler (t) ≤ Pboiler ,max (27)

0 ≤ POtrons (t) ≤ Ptrrons, max (28)

Fig. 3. profiles of the thermal/electrical loads in MCMG

0 ≤ Popv(t) ≤ Popv,max (29)

Mmin
j ≤ Mj(t) ≤ Mmax

j j ∈ {e, h} (30)

0 ≤ Ej(t) ≤ Emax
j j ∈ {e, h} (31)

3. The results of the simulation and discussion

The introduced model in this article is exerted to an indus-
trial zone as a multi-carrier MG to evaluate the efficiency
of the suggested method. The suggested multi-carrier MG
is connected to the grid, natural gas, and district heat net-
work, as shown in Fig. 1. The suggested method specifies
the best operating point of the MCMG’s elements, includ-
ing the boiler, CHP, transformer, PV, and energy storage
elements. The specifications of MCMG’s elements are men-
tioned in Table 2. The model is optimally scheduled in two
reported cases at 24 hours. In case 1, the energy scheduling
of the proposed model considering DRPs is scrutinized.
The second case analyzes the impact of uncertainties on the
system. The uncertainties corresponding with the thermal
and electrical load forecast errors, photovoltaic generation,
and electricity price are assumed in the operation manage-
ment of the proposed MCMG.

Case 1. MCMG operation with DRPs Thermal and load
profiles of PV for the 24-hour are shown in Figs. 3 and 4,
respectively. The power purchase and prices are assumed
to have the same values in three periods (time-of-use (TOU)
policy), and the prices of natural gas are fixed, as depicted
in Table 3. It is noteworthy to mention that the uncertainty
of loads and solar generation is not assumed to simplify
and lower the computational burden of the problem.

According to Figure 5(a)-(b), electrical and thermal re-
sponsive loads each account for 10% of this model’s total
loads. The responsive demand loads are encouraged to
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Table 2. Comparison of time performance and performance with different superpixel methods

Elements value
0.92

Ko&m
0.002Interconnector Trans Efficiency

CHP
Capacity (kW) 1500

0.00587Electrical Efficiency 0.4
Heat Efficiency 0.3

Boiler
Capacity (kW) 1700

0.001Heat Efficiency (kW) 0.85
Electrical storage Capacity (kW) 1 − 90 -

Heat storage Capacity (kW) 90 -

Inverter
Capacity (kW) 30

0.003Efficiency 0.95

Table 3. Electricity, Natural gas, and heat sales’ market price

($/kWh)
Time (hour)

1 − 7 8 − 18 19 − 22 23 − 24
πe, ψe 0.1014 0.117 0.13 0.1014

πg 0.07 0.07 0.07 0.07
ψh 0.07 0.08 0.09 0.08

Fig. 4. Hourly generation of the photovoltaic system

move from peak to off-peak periods. As shown in Fig. 5
(a) and (b), electrical/thermal sensitive loads are shifted to
demand during off-peak times, with customers participat-
ing as active loads. Table 4 displays the price elasticity of
demand each time.

The thermal and electrical responsive loads’ FEP and
basis are shown in Fig. 6 (a)-(b), respectively. Due to so-
lar production, the FEP of the electric responsive load is
decreased at certain periods compared to its base price, re-
sulting in less energy purchased from the main grid. These
factors increase power purchases during these periods. In
contrast, the FEPs of the thermally responsive load rise at
every interval.

Fig. 7(a)-(b) depicts the electric and heat balances of the
proposed MCMG. CHP increases gas consumption to meet
numerous energies needs simultaneously. According to
Fig. 7(a), solar power reduces electricity imports at almost

(a) Electrical

(b) thermal

Fig. 5. Responsive load profile under FEP in case 1

all intervals. In addition, more power is stored during these
periods, and the DRP has resulted in a shift in the pattern.

Fig. 8 (a)-(b) depicts, respectively, the equivalent storage
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Table 4. Self and cross elasticities of carriers

Peak Off-peak valley

Electricity
Peak -0.03 0.01 0.02

Off-peak 0.01 -0.01 0.01
valley 0.02 0.01 0

Heat
Peak -0.03 0 0

Off-peak 0.01 -0.02 0.02
valley 0.02 0.01 0

(a) Electrical

(b) thermal

Fig. 6. FEP of responsive load in case 1

power flows and the state of charge (SOC) of the electric
and heat storages.

As an MINLP model, the overall operating cost is op-
timized and lowered. The price-responsive load partici-
pation from 0% to 100% of the total load is investigated,
and the load factor (LF) and MCMG cost for two suggested
DRP models are compared in Fig. 9. In addition, the FEP
and TOU programs achieve exceptional outcomes in the
optimization process, increasing the likelihood that these
programs will be advantageous for the MCMG’s owner.
Both of the suggested DRP outcomes support the effective-
ness of the FEP strategy.

The findings indicate that the engagement of 20% of
consumers yields the greatest LF in both models. The pre-

(a) Electrical

(b) thermal

Fig. 7. The energy portion of the MCMG network – the
first model of DRP in case 1

sented results indicate that the total cost of MCMG under
the FEP policy is proportional to customer participation
in DRPs compared to the TOU policy. In both models, the
overall cost of the network is lower when responsive load
participation is greater. In contrast, the inclusion of respon-
sive load would either increase or degrade the LF of each
model’s MCMG.

According to the analyses of the preceding findings, the
involvement of price-responsive loads and the integration



Journal of Applied Science and Engineering, Vol. 28, No 4, Page 865-877 873

(a) Electrical

(b) thermal

Fig. 8. The rate of charge/discharge and SOC – the first
model of DRP in case 1

of diverse energy infrastructure in MCMGs are essential
for reaching optimum operating costs.

Case 2. MCMG operation with DRPs under uncer-
tainties Case 2 examines energy scheduling studies per-
taining to uncertainties related to demands, power costs,
and photovoltaic output. The data are only presented in
probability and cumulative distribution function (PDF and
CDF) versions for a certain hour (noon). Fig. 10 depicts
the probabilistic form of power flows of a storage system
and the SoC of electricity and heat storage. Under unpre-
dictable conditions, it is evident that the performance of
the electrical storage would be highly difficult. As seen in
Fig. 11 , electrical/ thermal loads, which are responsive, are
shifted to off-peak times, i.e., consumers are active loads.

Fig. 12 depicts the probability density function (PDF)
of FEP for electrically and thermally sensitive loads at a
certain hour. The FEP might vary significantly depending

(a) Electrical

(b) thermal

Fig. 9. The impact of participation of responsive load on
MCMG cost and LF for different DR models in case 1

on the unpredictability of system parameters. In an unpre-
dictable environment, the load factor of the MCMG would
likewise fluctuate between 72% and 87%. (See Fig. 13.

Lastly, the PDF and CDF of the overall case 2 cost are
shown in Fig. 14. Comparing case 1’s deterministic model
to case 2’s uncertain model reveals that the overall cost
of the system in instance 2 is much higher. In conclusion,
the probabilistic analysis of the system significantly makes
the optimization algorithm more complex, but it provides
the dispatcher with a better understanding of the risk of
change in the total system cost, and the obtained results
are more reliable from the perspective of energy operation
management.

4. Conclusions

In order to find the optimal operation solution of a grid-tied
MCMG, a nonlinear mixed-integer programming model
was extracted in this study, the model’s goals were inte-
grating multiple energy facilities and minimizing the multi-
carrier microgrid and costs of maintenance and operation
under uncertainties. This paper proposed a novel price-
responsive load that integrates the final price of energy of
demanded loads for multiple carriers with energy market
price, site generations, and energy purchase. Also, the pro-
posed method has been analyzed on two different DRP
models to verify the model’s effectiveness. The proposed
multi-carrier microgrid was investigated considering the
uncertainties in thermal and electrical loads, solar genera-
tions, and the electricity market.
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Fig. 10. PDF of storage energy flows and state of charges
in case 2

Fig. 11. The probability density function of thermal
/electrical load profile under final energy price policy in

case 2

Fig. 12. PDF of FEPs for responsive loads in case 2

Fig. 13. PDF of load factor in case 2
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Fig. 14. The overall cost of the MCMG in case 2

Including price-response loads in energy management
would result in lower operating costs at future distribution
grids. It also would give a realistic perspective of the smart
grids in future while allowing customers’ participation in
the smart grid environment. Thus, a new price-responsive
load model, which is characterized by shifting techniques
based on the final price of energy, was also applied in this
study. The proposed DR program model integrates the
final price of energy for price-responsive loads for the ther-
mal and electrical energy consumers with energy purchase,
on-site generations, and energy market impost. The supe-
riority of the proposed price-responsive method by two
different demand response models is affirmed. The usual
drawback of the conventional microgrid structure with a
single form of energy was solved by the presented net-
work with multiple energy carriers compared to the overall
electric EM strategies. Results show that the simultane-
ous operation of different energy carriers and utilization
of price-responsive loads resulted in lower operating costs
for smart distribution grids. Finally, the impact of uncer-
tain parameters was assessed in the system, enhancing the
optimal solution’s trustworthiness. The proposed model
can be utilized in several fields, including industrial and
commercial zones.
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nomenclature

Footnotes
0 initial value
α, β carriers type
e electriccity
g natural gas
h heat
p, l Input/output carrier
stb standby energy losses
Greek Symbols
ψ energy sales price ($/kWh)
ρ final energy price of responsive load
π energy purchase price ($/kWh)
v dispatch factor (%)
Subscripts
chp combined heat and power
bo boiler
char charging power of the storage interface
dischar discharging power of the storage interface
main maintenace
trans transformer
pv photovoltaic
Variables & Parameters
η efficiency
Cost cost($)
D responsive load (kWh)
Dshup/shdo shifted up/down energy demand (kWh)
D0 primary responsive load (kWh)
E state of charge for energy storage (kWh)
ee elasticity element
El elasticity
I binary variable
ISsh p/shdo shifting up/down the state of the demand {0/1}
K coefficient
L non-responsive load (kWh)
M The ramp rate of the charge and discharge in storage

(kWh)
P input energy (kWh)
Po generated energy (kWh)
R renewable generation (kWh)
T output energy (kWh)
t time (hour)
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