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1. Introduction and preliminaries

The classical theory of convexity plays an essential role in
various fields of science such as mathematics, engineering,
economics and physics. This is due to its theoretical [1–4]
and practical importance as a powerful tool for the devel-
opment of numerical methods to solve practical problems,
especially in mathematical optimization problems [5, 6].
However, imposing convexity conditions on sets and func-
tions in mathematical optimization problems entails some
limitations in the applications [7]. For this reason, and for
theoretical interest, various extensions and generalizations
close to convexity in some sense have been developed and
investigated by relaxing the convexity assumptions using a
variety of ideas and techniques. For example, in [8], a class
of functions called convexlike and a saddle point optimal-
ity condition for convexlike mathematical programs was
established. Hanson introduced a new class of differen-
tiable functions in 1981 to weaken the convexity condition,
so that the Kuhn-Tucker conditions of optimality for min-
ima became sufficient [7]. The new class introduced in [7]
is named as invex functions by Craven [9, 10]. The more

general class of functions (not necessarily differentiable),
called preinvex functions, was developed by Ben Israel and
Mond [11] and Hanson and Mond [12]. These functions
are used to develop some constraint qualifications and du-
ality results for scalar-valued optimization problem [13].
As a generalization of convex sets, the concept of invex
sets was first formally defined on subsets of real numbers
[13] and then extended to subsets of n-dimensional space
[14]. Preinvex functions are usually defined on invex sets.
For more recent work on invex sets, preinvex functions
and generalized preinvex functions and their applications
in applied mathematics and optimization theory (see e.g.
[15–20]). In recent years, new important generalizations of
convex functions were developed [21–23].

Another important generalization of convex sets and
convex functions, named as E-convex sets and E-convex
functions, was introduced by Youness [24], where a map-
ping E : Rn → Rn has the main effect in the study of
this kind of generalization. Youness investigated many
important properties of E-convexity and was the first to
define an E-convex optimization problem and develop its
stability and optimality properties [25, 26]. Youness and
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his collaborators also developed some duality properties
in E-convex optimization problem and studied optimality
conditions for E-convex problem that have E-differentiable
objective functions [27, 28]. This work motivated many re-
searchers to further study E-convexity and develop many
generalizations and extensions of E-convex functions and
their applications in single objective and multiobjective op-
timization problems (see, e.g., [29–38] and the references
therein).

Fulga and Perda [39] studied E-preinvex functions de-
fined on E-invex sets as a new generalization of convexity
by combining invex sets (resp. preinvex functions) with
E-convex sets (resp. E-convex functions). Inspired by [39],
many researchers have introduced and studied new gener-
alized convex functions by combining E-convex functions
with some generalizations of preinvex functions (see, e.g.,
[40–44] ).

The class of exponentially convex functions is regarded
as a further extension of convex functions. The importance
of this class arises from its applications in information the-
ory, data analysis, machine learning and statistics [45, 46].
Recent research on the properties of exponential convex
functions and their applications in mathematics and op-
timization problems can be found in the papers [47–52].
In 2019, Noor and Noor introduced the class of exponen-
tially preinvex functions and derived some interesting gen-
eral and optimality properties that this class possesses [53].
More recently, Abdulaleem [54] introduced the class of ex-
ponentially E-convex functions as a generalization of the
class of exponentially convex functions. Abdulaleem used
this class in the development of some optimality conditions
for multiobjective programming problems.

Following the ongoing research on generalized convex-
ity, our aim in this paper is to introduce the class of expo-
nentially E-preinvex functions and to study some of their
general and optimality properties. For rest of this section,
some preliminary concepts related to our work are recalled
and new definitions needed in this work (see Definition
1.9 and Definition 1.10(2-3)). In section two the class of ex-
ponentially E-preinvex functions is defined, by combining
exponentially E-convex functions with exponentially prein-
vex functions, and two examples of exponentially and non
exponentially E-preinvex functions are shown. Then, some
general properties are discussed and different necessary
and sufficient conditions for a function f to be exponen-
tially E-preinvex using γ-level sets and the epigraph sets
of f are proved. In section three, a nonlinear optimiza-
tion problem is constructed by employing exponentially
E-preinvex functions and new results and optimality prop-
erties are deduced.

Throughout this paper, let A ⊆ Rn be a non-empty set
and f : A ⊆ Rn → R.

Assume also that E : Rn → Rn where E(x) is written as
Ex and ω : Rn × Rn → Rn are two given mappings.

The following needed preliminary concepts are recalled.

Definition 1.1. [14] The set A is called invex if for
each a1, a2 ∈ A and for each λ ∈ [0, 1], we have a2 +

λω (a1, a2) ∈ A.

Definition 1.2. [39] Let A1 and A2 be two subsets of
Rn. Then, A1 is named as be slack invex (for short, s.
invex) with respect to A2 if, for each a1, a2 ∈ A1 ∩ A2

and every λ ∈ [0, 1] such that a2 + λω (a1, a2) ∈ A2

we get a2 + λω (a1, a2) ∈ A1.

Definition 1.3. [24] The set A is said to be an E-convex
set if λEa1 + (1 − λ)Ea2 ∈ A, for each a1, a2 ∈ A and
λ ∈ [0, 1].

Definition 1.4. [39] The set A is said to be an E-invex
set with respect to ω if Ea2+ λω (Ea1, Ea2) ∈ A, for
each a1, a2 ∈ A and λ ∈ [0, 1].

Proposition 1.5. [39] If A is E-invex. Then, E(A) ⊆ A.

Definition 1.6. [35] The function f is named expo-
nentially preinvex on the invex set A, if for every
a1, a2 ∈ A and λ ∈ [0, 1]

e f (a2+λω(a1,a2)) ≤ λe f (a1) + (1 − λ)e f (a2)

Definition 1.7. [54] The function f is named expo-
nentially E-convex on the E-convex set A, if for every
a1, a2 ∈ A and λ ∈ [0, 1]

e f (λEa1+(1−λ)Ea2) ≤ λe f (Ea1) + (1 − λ)e f (Ea2)

Definition 1.8. [53] The epigraph set of exponentially
preinvex function f is given as

epif =
{
(a, γ) ∈ A × R : e f (a) ≤ γ

}
.

In a similar manner, we define the epigraphs associ-
ated with the mapping E as follows.

Definition 1.9.

E − epi f =
{
(a, γ) ∈ A × R : e f (Ea) ≤ γ

}
.

epiE f =
{
(Ea, γ) ∈ E(A)× R : e f (Ea) ≤ γ

}
.

With each epigraph defined above, γ-level sets are
associated, respectively, as follows.

Definition 1.10. Let γ ∈ R. Then,

1. Hγ =
{

a ∈ A : e f (a) ≤ γ
}

.[53]

2. E − Hγ =
{

a ∈ A : e f (Ea) ≤ γ
}

.

3. Hγ,E =
{

Ea ∈ E(A) : e f (Ea) ≤ γ
}

.
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2. Exponentially E-preinvex functions

In this section we define exponentially E-preinvex func-
tion and provide two different examples of exponentially
and non exponentially E-preinvex functions. Then, we pro-
vide different properties of the new defined function which
include general properties as well as providing different
necessary and sufficient conditions to obtain exponentially
E-preinvex function f in terms of γ-level sets and the epi-
graph sets of f .

Definition 2.1. The function f is named as exponen-
tially E-preinvex on the E-invex set A, if for every
a1, a2 ∈ A and λ ∈ [0, 1]

e f (Ea2+λω(Ea1,Ea2)) ≤ λe f (Ea1) + (1 − λ)e f (Ea2).

The next example shows an exponentially E-preinvex
function that is not exponentially preinvex.

Example 2.2. If f , E : R → R and ω : R × R → R are
shown below.

f (a) =

{
4a a > 0

a2 + 1 a ≤ 0 , Ea =

{
(1+a)2

4 a > 0
(1−a)2

4 a ≤ 0

and

ω (a1, a2) =

{
a1 − a2 a1, a2 > 0 or a1, a2 ≤ 0
−a1 otherwise

for all a1, a2 ∈ R. Note that f is exponentially E-
preinvex on R but not exponentially preinvex func-
tion. Take, take a1 = 1, a2 = −1 and λ = 1. Then
ω (a1, a2) = −1. Hence, e f (a2+λω(a1,a2)) = e f (−2) = e5

and λe f (a1) + (1 − λ)e f (a2) = e4.

This shows,

e f (a2+λω(a1,a2)) > λe f (a1) + (1 − λ)e f (a2).

Hence, f is not exponentially preinvex on R. To show
that f is exponentially E-preinvex, we have three pos-
sibilities:

Case (1): If a1, a2 > 0 then

e f (Ea2+λω(Ea1,Ea2))

= e
(1+a2)

2

4 +λ

(
(1+a1)

2

4 − (1+a2)
2

4

)

= eλ
(1+a1)

2

4 +(1−λ)
(1+a2)

2

4 ≤ λe
(1+a1)

2

4 + (1 − λ)e
(1+a2)

2

4

= λe f (Ea1) + (1 − λ)e f (Ea2)

The above inequality holds for any p, q > 0 and
λ ∈ [0, 1].
i.e., pλq1−λ ≤ λp + (1 − λ)q.

Case (2): If a1, a2 ≤ 0 then

e f (Ea2+λω(Ea1,Ea2))

= eλ(1−a1)
2+(1−λ)(1−a2)

2
≤ λe(1−a1)

2
+ (1 − λ)e(1−a2)

2

= λe f (Ea1) + (1 − λ)e f (Ea2)

Case (3): If a1 > 0, a2 ≤ 0 then

e f (Ea2+λω(Ea1,Ea2))

= eλ(1+a1)
2+(1−λ)(1−a2)

2
≤ λe(1+a1)

2
+ (1 − λ)e(1−a2)

2

= λe f (Ea1) + (1 − λ)e f (Ea2)

From the three cases, we have

e f (Ea2+λω(Ea1,Ea2)) ≤ λe f (Ea1) + (1 − λ)e f (Ea2)

as required.

Another example of a function, defined on a
proper set A, which is neither exponentially E-
preinvex nor exponentially preinvex.

Example 2.3. Let A = [−2,−1] ∪ [1, 2], f : A →
R, E : R → R, and ω : R × R → R are defined as.

f (a) =
{

1 a ∈ [−2, 0]
1
2 otherwise

, Ea =

{
a2 a ∈ [−1.4, 1.4]
−1 otherwise

and

ω (a1, a2) =

 a1 − a2 a1, a2 ≥ 0 or a1, a2 ≤ 0
−2 − a2 a1 > 0, a2 ≤ 0 or a1 ≥ 0, a2 < 0
1 − a2 a1 < 0, a2 ≥ 0 or a1 ≤ 0, a2 > 0

From [Example 2.1,39], the set A is an invex and E-
invex, respectively. However, the function f is neither
exponentially E-preinvex nor exponentially preinvex
on A with respect to ω. To show f is not exponentially
E-preinvex, let a1 ∈ [−1.4,−1], a2 ∈ [−2,−1.4] then

e f (Ea2+λω(Ea1,Ea2)) = e f (−1−λ)

= e1 ≥ λe f (Ea1) + (1 − λ)e f (Ea2) = −1.1λ + e1

Then, f is not exponentially preinvex.

Some properties of exponentially E-preinvex func-
tions on Rn are given next.

Proposition 2.4. Assume that f is exponentially E-
preinvex function on Rn and α ∈ R then f + α is
exponentially E-preinvex function on Rn.

Proof. Since f is exponentially E-preinvex function on
Rn and α ∈ R then eα > 0 and for any a1, a2 ∈ Rn and
λ ∈ [0, 1]

e f (Ea2+λω(Ea1,Ea2))eα ≤ λe f (Ea1)eα + (1 − λ)e f (Ea2)eα.

i.e.,

e f (Ea2+λω(Ea1,Ea2))+α ≤ λe f (Ea1)+α +(1−λ)e f (Ea2)+α.

Thus, f + α is exponentially E-preinvex function on
Rn.
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Proposition 2.5. Let f and g are two exponentially
E-preinvex functions on Rn and α1, α2 ≥ 0 then eh =

α1e f + α2eg is exponentially E-preinvex function on
Rn.

Proof. From the assumptions on f and g then for any
a1, a2 ∈ Rn and λ ∈ [0, 1]

e f (Ea2+λω(Ea1,Ea2)) ≤ λe f (Ea1) + (1 − λ)e f (Ea2) (1)

eg(Ea2+λω(Ea1,Ea2)) ≤ λeg(Ea1) + (1 − λ)eg(Ea2) (2)

Now, from the definition of eh with Eqs. (1) and (2) we
get

eh(Ea2+λω(Ea1,Ea2))

= α1e f (Ea2+λω(Ea1,Ea2)) + α2eg(Ea2+λω(Ea1,Ea2)) ≤

α1

(
λe f (Ea1) + (1 − λ)e f (Ea2)

)
+ α2

(
λeg(Ea1) + (1 − λ)eg(Ea2)

)
= λ

(
α1e f (Ea1) + α2eg(Ea1)

)
+ (1 − λ)

(
α1e f (Ea2) + α2eg(Ea2)

)
= λeh(Ea1) + (1 − λ)eh(Ea2)

Thus, eh is exponentially E-preinvex function on Rn.

Proposition 2.6. Let f and h are two real functions on
Rn and h = e f . Then f is exponentially E-preinvex
function on Rn if and only if h is exponentially E-
preinvex function on Rn .

Proof. Suppose that f is exponentially E-preinvex
function then for any a1, a2 ∈ Rn and λ ∈ [0, 1]

e f (Ea2+λω(Ea1,Ea2)) ≤ λe f (Ea1) + (1 − λ)e f (Ea2).

From the definition of h, we obtain the exponentially
E-preinvexity of h.

i.e., h (Ea2 + λω (Ea1, Ea2)) ≤ λh (Ea1) + (1 −
λ)h (Ea2). The reverse direction, of this property, can
be obtained similarly.

Remark 2.7. For the rest of this section, the set A is an
E-invex set and E(A) is an invex set.

The next three propositions provide different condi-
tions for f to be exponentially E-preinvex using the s.
invexity, E-invexity, and invexity for the γ-level sets
introduced in Definitions 1.10.

Proposition 2.8. Let f is exponentially E-preinvex on
A. Then Hγ is s. invex set with respect to E(A), for
any γ ∈ R.

Proof. Take a1, a2 ∈ Hγ∩ E(A) and λ ∈ [0, 1] such
that a1, a2 ∈ E(A), e f (a1) ≤ γ,

e f (a2) ≤ γ, and a2 + λω (a1, a2) ∈ E(A) ⊆ A (3)

Since f is exponentially E-preinvex on A, then

e f (a2+λω(a1,a2)) ≤ λe f (a1) + (1 − λ)e f (a2)

≤ λγ + (1 − λ)γ
(4)

From Eqs. (3) and (4), we get a2 + λω (a1, a2) ∈ Hγ as
required.

Proposition 2.9. Let A be an E-invex set with respect
to E ◦ ω and f is exponentially E-preinvex on A. If E
is linear and idempotent. Then, E − Hγ is an E-invex
set with respect to E ◦ ω for each γ ∈ R.

Proof. Let γ ∈ R and a1, a2 ∈ E − Hγ. Then e f (Ea1) ≤
γ and e f (Ea2) ≤ γ. Since A is an E-invex set with
respect to E ◦ ω then,

Ea2 + λ(E ◦ ω) (Ea1, Ea2) ∈ A (5)

and,

e f (E(Ea2+λ(E◦ω)(Ea1,Ea2)) = e f (E2a2+λ(E2◦ω)(Ea1,Ea2))

= e f (Ea2+λ(E◦ω)(Ea1,Ea2)),

≤ λe f (Ea1) + (1 − λ)e f (Ea2) ≤ γ

(6)
where the assumptions on E and f are employed in the
last steps. Using Eqs. (5) and (6), the required result is
obtained.

Proposition 2.10. If f is exponentially E-preinvex on
A. Then, Hγ,E is an invex set, for all γ ∈ R.

Proof. Take γ ∈ R and Ea1, Ea2 ∈ Hγ,E such that
e f (Ea1) ≤ γ and e f (Ea2) ≤ γ. From Remark 2.7, E(A) is
an invex set, then

Ea2 + λω (Ea1, Ea2) ∈ E(A) ⊂ A (7)

From the assumption property on f , we have

e f (Ea2+λω(Ea1,Ea2)) ≤ λe f (Ea1) + (1 − λ)e f (Ea2)

≤ λγ + (1 − λ)γ = γ
(8)

From Eqs. (7) and (8), we get Ea2 + λω (Ea1, Ea2) ∈
Hγ,E. Therefore, Hγ,E is an invex set as required.

Next, we provide some conditions for f to be expo-
nentially E-preinvex in terms of the epigraph sets of a
function introduced in Definitions 1.8-1.9.

Proposition 2.11. If f is exponentially E-preinvex on
A. Then epiE f is an invex set.

Proof. Let (Ea1, α) , (Ea2, β) ∈ epiE f . From the defi-
nition of epiE f , we have e f (Ea1) ≤ α, e f (Ea2) ≤ β and
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Ea1, Ea2 ∈ E(A). Since E(A) is an invex set, then for
any λ ∈ [0, 1]

Ea2 + λω (Ea1, Ea2) ∈ E(A) ⊆ A (9)

Since f is exponentially E-preinvex function, then

e f (Ea2+λω(Ea1,Ea2)) ≤ λe f (Ea1) + (1 − λ)e f (Ea2)

≤ λα + (1 − λ)β
(10)

From Eqs. (9) and (10), we get

(Ea2 + λω (Ea1, Ea2) , λα + (1 − λ)β) ∈ epiE f .
i.e., epiE f is an invex set.

Proposition 2.12. Let epiE f is s. invex with respect to
E(A)× R then f is exponentially E-preinvex on A.

Proof. Let a1, a2 ∈ A and λ ∈ [0, 1] such that(
Ea1, e f (Ea1)

)
,
(

Ea2, e f (Ea2)
)
∈ epiE f ∩ (E(A)× R)

. From the invexity of E(A),

Ea2 + λω (Ea1, Ea2) ∈ E(A),

thus,(
Ea2 + λω (Ea1, Ea2) , λe f (Ea1) + (1 − λ)e f (Ea2)

)
∈ E(A)× R.

From the assumption on epiE f(
Ea2 + λω (Ea1, Ea2) , λe f (Ea1) + (1 − λ)e f (Ea2)

)
∈ epiE f .

This means, e f (Ea2+λω(Ea1,Ea2)) ≤ λe f (Ea1) + (1 −
λ)e f (Ea2). Thus, f is exponentially E-preinvex on A.

Proposition 2.13. Let epif is s. invex with respect to
E(A)× R then f is exponentially E-preinvex on A.

Proof. Assume that a1, a2 ∈ A and λ ∈ [0, 1] such
that

(
Ea1, e f (Ea1)

)
,
(

Ea2, e f (Ea2)
)
∈ epif ∩(E(A)×R).

Since E(A) is an invex set
Then Ey + λω (Ea1, Ey) ∈ E(A), thus,(

Ea2 + λω (Ea1, Ea2) , λe f (Ea1) + (1 − λ)e f (Ea2)
)

∈ E(A)× R.

Since epif is s. invex with respect to E(A)× R then(
Ea2 + λω (Ea1, Ea2) , λe f (Ea1) + (1 − λ)e f (Ea2)

)
∈ epif

This means, e f (Ea2+λω(Ea1,Ea2)) ≤ λe f (Ea1) + (1 −
λ)e f (Ea2). Thus, f is exponentially E-preinvex on A.

3. Applications of exponentially E-preinvex func-
tions to nonlinear optimization problems

Consider the following nonlinear optimization problem
referred to as (P)

min f (a)
s.t. egi(a) ≤ ci, i = 1, . . . , r

a ∈ A,

where A, f and E are defined as in section one, ci ∈
R ∀i = 1, . . . , r, and gi : Rn → R be a real valued func-
tions for i = 1, . . . , r where A is E-invex set and f and
gi are exponentially E-preinvex functions on A, for each
i = 1, . . . , r. The set of the feasible solution of problem (P)
is referred to as Fe and defined as

Fe =
{

a ∈ A : egi(a) ≤ ci, i = 1, . . . , r
}

Also, the set of optimal solutions denoted by argminFe
f

and defined as

argminFe
f = {a∗ ∈ Fe : f (a∗) ≤ f (a) ∀a ∈ Fe} .

Problem (P) is named as exponentially E-preinvex opti-
mization problem.

Using some assumptions, the sets Fe and argminFe
f of

problem (P) are s. E-invex with respect to E(A) as it is
stated in the below two theorems.

Theorem 3.1. Let E(A) be an invex and Fe ∩ E(A) ̸= ϕ.
Then, the set Fe is s. E-invex with respect to E(A).

Proof. Let a∗1 , a∗2 ∈ Fe ∩ E(A), i.e., a∗1 , a∗2 ∈ E(A), then
there exists a1, a2 ∈ A such that a∗1 = Ea1, a∗2 = E, a2

and a∗2 + λω
(
a∗1 , a∗2

)
∈ E(A), for each λ ∈ [0, 1]. From

Proposition 1.4, E(A) ⊆ A, hence, a∗2 + λω
(
a∗1 , a∗2

)
∈

A. We need to show that a∗2 + λω
(
a∗1 , a∗2

)
∈ Fe. Fix

i ∈ {1, 2, . . . , r}. Since gi is exponentially E-preinvex,
then egi(a∗2+λω(a∗1 ,a∗2)) ≤ λegi(a∗1) + (1− λ)egi(a∗2) ≤ ci.
From the last expression and definition of Fe, one ob-
tain a∗2 + λω

(
a∗1 , a∗2

)
∈ Fe as required.

Theorem 3.2. Let E(A) be an invex set and
argminFe

f ∩ E(A) ̸= ϕ.Then, argminFe
f is a s. E-

invex with respect to E(A).

Proof. Let a∗1 , a∗2 ∈ argminFe
f ∩ E(A) then f

(
a∗1
)
=

f
(
a∗2
)

= p∗. Using Theorem 3.1, we have a∗2 +

λω
(
a∗1 , a∗2

)
∈ E(A) ⊆ A. Using the exponentially

E-preinvexity of f ,

e f (a∗2+λω(a∗1 ,a∗2)) ≤ λe f (a∗1) + (1 − λ)e f (a∗2)

≤ λep∗ + (1 − λ)ep∗ = ep∗ .
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i.e.,
f (a∗2 + λω (a∗1 , a∗2)) = p∗.

Thus,
a∗2 + λω (a∗1 , a∗2) ∈ argminFe

f .

Under certain condition every local minimum of
problem (P) is a global minimum as it is stated next.

Theorem 3.3. If Fe ⊂ E(A). Then every local mini-
mum is a global minimum.

Proof. Let a∗ ∈ Fe ⊂ E(A) be a local minimum point
then there exists ε > 0 such that

B (a∗, ε) ⊂ E(A) and f (a∗) ≤ f (a)

∀a ∈ U = B (a∗, ε) ∩ Fe.
(11)

To complete the proof, it is enough to show that
f (a∗) ≤ f (a), ∀a ∈ Fe\U. On contrary, assume
that there is ā ∈ Fe, ā ̸= a∗ such that

f (ā) < f (a∗) . (12)

From Eq. (11), ā /∈ B (a∗, ε) and ∥ā − a∗∥ ≥ ε. Let
a∗1 , a∗2 ∈ A such that ā = Ea∗1 , a∗ = Ea∗2 . Since A is
E-invex, we have Ea∗2 + λω

(
Ea∗1 , Ea∗2

)
∈ A. Since f

is exponentially E-preinvex on A, then

e f (a∗2+λω(a∗1 ,a∗2)) ≤ λe f (a∗1) + (1 − λ)e f (a∗2)

Applying Eq. (12), the last inequality gives

e f (a∗+λω(ā,a∗)) ≤ λe f (ā) + (1 − λ)e f (a∗)

< λ f (a∗) + (1 − λ)e f (a∗) = e f (a∗)

(13)
If ω (ā, a∗) = 0. Then for any λ ∈ [0, 1], it yields
f (a∗ + λω (ā, a∗)) = f (a∗) which contradicts Eq. (13).
If ω (ā, a∗) ̸= 0. Choose ε > 0 sufficiently small such
that ε

∥ω(ā,a∗)∥ ≤ 1. Set λ̄ = min
{

λa∗1 ,a∗2 , ε
∥ω(ā,a∗)∥

}
.

Then for any λ ∈ [0, λ̄], we get

∥a∗ − [a∗ + λω (ā, a∗)]∥ = ∥λω (ā, a∗)∥ ≤ λ̄ ∥ω (ā, a∗)∥ ≤ ε,

i.e., a∗ + λω (ā, a∗) ∈ B (a∗, ε) ⊂ E(A). From the last
statement and the assumption Fe ⊂ E(A), then em-
ploying Theorem 3.1, we have a∗+ λω (ā, a∗) ∈ Fe.
Again, Eq. (13) contradicts the fact that a∗ is a local
minimum on Fe.
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