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Presenting A New Algorithm To Diagnose Faults In Gas Turbine
Compressors Using Vibration Analysis, T-test, And Support Vector

Machine
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This research presents a new method for identifying faults in gas turbine compressors, using vibration analysis
and statistical tests inside the support vector machine (SVM) algorithm. In the proposed technique, the dynamic
signals are first received in the frequency domain, and the investigated frequency domain is divided into smaller

ranges. Then, the RMS of each range is extracted as a frequency feature and given as input to the SVM algorithm.

Because a large selection of features causes the classification accuracy to decrease, and also to select better
features, the extracted feature vector is first passed through T-test filters with different significance levels and
then given as input to the SVM algorithm. This method, while increasing the classification accuracy from 80.9%
to0 99.4%, helps the recognition of frequency ranges, which have noticeable variations under the influence of the
fault. Based on the obtained results, compressor faults mostly increase the intensity of vibrations in frequency
bands above 1500 Hz.
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1. Introduction

Real-time monitoring of machine component operations
increases security while reducing maintenance and repair
costs. Controlling vibrations to detect abnormal oscilla-
tions resulting from faults is one of the methods of rotating
machinery condition monitoring [1-3]. Vibration in ma-
chinery includes vibration in the gears, rotating axis, and
bearings, which have a lower output frequency than the
engine. Experimental vibration analysis of gearboxes, in-
dustrial equipment, compressors, turbines, etc., has many
difficulties. In addition to repair costs, the breakdown of
gas turbine compressors causes damage to related indus-
tries, which increases the importance of optimal mainte-
nance of gas turbine compressors [4-6].

Saravanan and Ramachandran [7] were among the

people who conducted initial research in intelligent trou-
bleshooting. Li et al. [8] used the frequency features of
rolling bearings as the neural network input. Kang et al.
[9] used the extracted frequency features of the vibration
signals using fuzzy neural networks in the motor-bearing
system. Lou and Loparo [10] investigated bearings fault
diagnosis by extracting standard deviation values wavelet
coefficients and using the fuzzy classifier. By extracting
the best statistical features of vibration signals and with
the help of fuzzy inference, Saravanan et al. [11] designed
an intelligent system to determine and diagnose the fault
of the bevel gear gearbox. Lei and Zuo [12] classified the
gear fault in a gearbox sample with the help of extracting
statistical parameters and the nearest neighbor pattern clas-
sification method. Fault analysis of machine tools based
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on grey relational analysis and main factor analysis investi-
gated by Shen et al. [13].

Various methods have been provided to diagnose the
fault and monitor the condition, and condition monitoring
based on vibration analysis is one of the safest and most
accurate methods in this field [14-17]. Considering that the
vibration signals taken from the machine contain useful
information, by examining the physical characteristics of
the vibration signals and extracting their features, it is pos-
sible to find out the existence of faults in different parts of
the machinery [18-20]. Rajeswari et al. [21] used the time-
frequency domain to extract the statistical features of the
vibration signals related to faulty gears. They gave the ob-
tained features as input to the error backpropagation neural
network classification methods and the C4.5 decision tree
algorithm. They investigated the effective parameters of
the statistical features of signals and fault diagnosis in these
systems. Bordoloi and Tiwari [22] used wavelet transform
to process and extract features from faulty shaft signals.
Lu et al. [23] tried to introduce a powerful feature that can
lead to the correct classification of signals. Mohammed
et al. [24] investigated vibration signal analysis to detect
gear faults with different crack growth scenarios. Effect
of noise on output-only modal identification of beams in-
vestigated by Jahangiri et al. [25] and Hernandez-Vargas
et al. [26] presented a combination of singular value decom-
position methods, statistical analysis, and artificial neural
networks to process vibration signals. In their research,
the steady-state signal has been used in the fault diagnosis
process. The data is first converted from analog to digital
data by a data acquisition system with a certain sampling
frequency. Then, the singular values are extracted by the
SVD method. Three statistical features are extracted for
these single values, including the mean, variance, and in-
formation entropy (Shannon entropy). After the features
are extracted from the single or combined fault classes, the
classification step is implemented with the help of the error
backpropagation neural network. Tang et al. [27] utilized
a small sample transfer feature method to diagnose the
faults in compressors. The results of their study indicated
that the accuracy of the applied method is very high by
decreasing the domain and source data distribution by up
to 92%. The obtained accuracy suggests the superiority of
transfer learning and deep learning diagnostic methods in
issue detection. He et al. [28] proposed the application of
an approximate entropy nonlinear method integrated with
empirical mode decomposition for fault diagnosis in the
rotating machinery. The outcomes demonstrated that the
approximate entropy method is an effective method when
associated with empirical mode decomposition, and the

proposed method can be employed widely in rotating ma-
chinery. A review of feature selection and feature learning
in machine learning applications for gas turbines has been
published by Xie et al. [29]. As part of this review paper,
46 studies using feature selection and feature learning for
gas turbine modelling with machine learning are reviewed.
The work of Hidalgo-Mompean et al. [30] relates specifi-
cally to the problem of feature selection when dealing with
the detection of compressor failure modes using machine
learning. In order to achieve this objective, several methods
of feature selection ranking are examined. Mousavi et al.
[31] proposed a fault detection approach for monitoring
turbines. A neuro-fuzzy inference system is used in con-
junction with an orthonormal basis function to construct
nonlinear dynamical models using experimental data.

Nowadays, the use of neural networks and learning
algorithms has increased in the field of mechanical equip-
ment troubleshooting and general classification [32-35]. So
far, different neural networks, such as ANFIS, RBF, MLP,
etc., have been presented, which generally operate based
on minimizing modeling or classification errors [36-39]. In
this research, the support vector machine (SVM) algorithm
is used to classify faults. SVM is a learning machine that
was introduced in 1995 by Essam et al. [40]. SVMs are de-
signed in such a way that they minimize the operational
risk instead of minimizing the modeling error and thus
perform better in classification problems. For this purpose,
the vibration signals will be recorded experimentally using
the accelerometer sensors installed on the turbocompressor
body with the help of the data acquisition system. Using
the frequency spectrum and according to the ISO standard
10816, faults in the turbocompressors have been studied by
investigating received signals. Moreover, the main contri-
butions of the presented study are as follows:

¢ A vibration analysis-based support vector machine is
engaged to enhance the classification of the SVT in the
fault diagnosis.

¢ The relation between the vibrations and faults is inves-
tigated.

® The accuracy of the proposed model is evaluated ex-
perimentally by the employment of a test section.

2. Methodology

According to the repair instructions for gas turbine turbo-
compressors, unloading and testing are done in an eight-
month overhaul. In this research, after determining the
optimal points for vibration data acquisition, data acquisi-
tion operations were obtained from the turbocompressors
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for two years before the eight-month overhaul. After check-
ing the performance of turbocompressors, the data was
divided into two parts: intact and faulty. It is necessary
to explain that turbocompressors that continue to operate
after data collection are considered intact, and if they stop
after a short period of time or are defective, according to
experts, they are considered faulty.

After classifying the data by processing the vibration
signals obtained in the frequency domain, features are ex-
tracted for training the SVM network. In the algorithm pre-
sented in the present research, the vibration signals are first
received in the frequency domain, and the investigated fre-
quency range is divided into several smaller ranges. Then,
the RMS of each range is extracted as a frequency feature to
be given as input to the SVM network. To achieve accurate
results, small frequency ranges should be selected. This
increases the number of features, and a large number of
features may decrease the accuracy of the SVM network.
First, the features extracted in the T statistical test are ex-
amined to solve this problem, and features from the two
classes, which have a significant difference in terms of the
T-test, are selected as input to the SVM network. The T-test
is a statistical examination that equates the variance and
mean of features obtained from two separate classes. The
T-test is employed when the samples show normality, inde-
pendence, and equal variance conditions. The T-tests also
can be used when two independent groups are compared
with each other. The mentioned specification is one of the
main advantages of the T-test [41]. It selects the features
in different classes with a greater mean difference. The T
value is obtained based on Eq. (1) and compared with the
critical value of the T distribution to compare the mean of
two characteristics from two different groups in the T-test.
In general, if the value of the statistic T is smaller than the
critical value of the T distribution, with the degree of free-
dom mentioned in Eq. (2) and at the alpha error level, the
assumption of equality in the mean of the two populations
is confirmed. That feature is removed from the feature
vector. As a result, the T-test removes the features that
behave almost the same in different classes. Their entry
into the SVM network does not help the diagnosis process
and reduces the classification accuracy.

=22 (1)

T =
si 52
n T ony
o3y
i 2
af = L - @
(@) )
n—1 ni np—1 ny

where X, s;,n; and df are the mean, variance, number of

samples in the i group, and the degree of freedom of the
T statistic, respectively.

The goal is to form the best feature vector of frequencies
to achieve the highest classification accuracy according to
their values. The algorithm presented in this research can
be very useful for preliminary checks and diagnosing the
faults of complex and unknown systems.

2.1. Support Vector Machine

SVM is a supervised classification method that predicts a
sample’s class. SVM separates two classes directly through
an optimization process using all the bands. It determines
the separating planes and the optimal decision boundary
(hyperplane), so the hyperplane has the greatest distance
from both sides to both classes. The closest training sam-
ples to these planes are called "support vectors" (Fig. 1)
[42].

Margin (gap between decision
boundary and hyperplanes)

Xz /

Decision boundary

Support vectors

Hyperplane
for second
class

Hyperplane
for first class

Fig. 1. Classification of the two classes using SVM [43]

In general, SVM is a two-class linear classifier, which
can also be used as a multi-class and nonlinear classifier
by developing it and using kernel functions. Assuming n
training samples in a real space with dimensions N and
two classes for each sample [44]:

S = {(x,-,y,-) |x; € RN,y € {~1,1},i = 1,2,.‘.,1} 3)

Where y; is the output of each class of the ith training
sample. The goal is to find a plane that separates y; = 1
class points from y; = —1 class.

To calculate w and b for multi-class classification in
nonlinear mode using kernel functions, the optimization
problem must be solved. Basically, the SVM classifier is
a binary classifier. The general approach is to reduce the
multi-class problem to several binary problems for solving
the multi-class problem. Each problem is solved with a
binary separator. Then, the output of the binary separators
of the SVM is combined, and thus the multi-class problem
is solved.
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2.2. Measurement of vibrations and experimental tests

Different vibration sensors with different installation loca-
tions are used to monitor the conditions and protect turbo-
compressors against high vibrations in gas pressure booster
stations. In Fig. 2, a view of the turbocompressor under in-
vestigation used in the pressure boosting station is shown,
along with the type and installation location of the sensors.
Table 1 demonstrates the type and installation location of
the sensors used to measure this equipment’s vibrations.

The sensors used in the present research, as shown in
Fig. 3, are proximity and acceleration probes. A data collec-
tor, also known as a data logger, is a small, portable device
for temporary recording and data transfer to a computer.
The portable equipment used to record vibration data is
VibroTest60, made by Briiel & Kjeer and STD3300. These
two types of data collectors are shown in Fig. 3.

Experimental tests have been carried out on SIEMENS
GT10B gas turbine. This turbine is used in distributed
energy station project run by Guangzhou Development
Group Co. Ltd. in Taiping Industrial Park, Guangzhou has
been. The specification of this turbocompressor are listed in
Table 2. Different vibration sensors installed on the turbo-
compressor are shown in Fig. 4. The accelerometer sensor
is installed on the turbine, which measures horizontal vi-
brations. The proximity sensor, located at the end of the
turbine, is used to record the vibrations of the main shaft.
Also, the proximity sensor installed on the upper position
of the compressor (this position is determined based on
the ISO standard 10816) is used to record vibrations in the
vertical direction of the turbocompressor.

In this work, compressors are classified into two cate-
gories: healthy and faulty. In order to determine the condi-
tion of the compressor, the ISO 10816 standard is used. This
part of ISO 10816 establishes procedures and guidelines for
the measurement and classification of mechanical vibration
of reciprocating compressor systems. The vibration values
are defined primarily to classify the vibration of the com-
pressor system and to avoid fatigue problems with parts
in the reciprocating compressor system, i.e. foundation,
compressor, dampers, piping, and auxiliary equipment
mounted on the compressor system. According to the ISO
10816 standard, the boundaries of overall vibration velocity
limiting for gas turbines are shown in Table 3. The warn-
ing value should be 25% lower than the border of zone C.
The stop value is also between C and D areas. In zone A
and zone B the compressor systems with vibration within
these zones are normally considered acceptable for long-
term operation. Using the ISO 10816 standard, vibration
signals can be analyzed to detect different types of gas tur-
bine faults, including shaft misalignment, shaft bending,

bearing failure, mechanical faults, and rotor faults. As the
primary objective of the present study was to apply the
algorithm to detect faults in gas turbine compressors, the
data were classified into healthy and faulty compressors.

3. Results and discussion

3.1. Vibrations frequency spectrum

The vibration frequency spectrum of different points of the
turbocompressor is presented in Fig. 5. These results are
recorded and presented at 178Hz. By examining the fre-
quency spectrum extracted at different points of the turbo-
compressor, it can be seen that the data collection location
has a significant effect on the number of frequencies in the
frequency response function (FRF). The results show that
in the frequency spectrum obtained from BRG1 and DEB
points, the odd frequencies appear in the FRF, while the
even frequencies do not appear in it. Meanwhile, the FRF
obtained from point DE contains all the system’s natural
frequencies. According to Fig. 5b, it can be observed that
the first three frequencies of this type of turbocompressor
are equal to 92Hz, 185Hz, and 278Hz, respectively. In ad-
dition, based on the recorded data, it can be seen that the
maximum speed of recorded turbocharger oscillations is
4.58mm/s. Therefore, this compressor is located in the B/C
area. Based on this, according to the ISO 10816 standard, it
can be said that because the vibrations of the compressor
are in the C region, this turbine is not suitable for long-term
operation, and the performance of this turbine should be re-
viewed, and the repairs should be considered. Considering
that the frequencies created in the frequency spectrum are
1x, 2x, and 3x, it is predicted that the shaft may be crooked
or uneven. In addition, in this condition of compressor
operation, there is a possibility of the influence of flow
turbulence or gas flow variations on the system vibrations.

The time response of the turbocompressor recorded at
the NDE and ND points is demonstrated together in Fig. 6.
Time response registration is done within 200 seconds. As
can be seen, at the NDE point, the system’s frequency is
almost constant over time, which indicates the linear behav-
ior of the system. Despite this, the wavelet transformation
of the signal recorded at the ND point shows that the fre-
quencies appearing in the response are time-varying, indi-
cating the system’s nonlinear behavior. It can be the result
of the fault’s effect on the behavior of the turbocompressor.

3.2. Results of applying the fault diagnosis algorithm

To classify faults using SVM, first, through signal process-
ing, useful features should be extracted from the vibration
signal and given as input to the SVM network so that the
network is trained and tested. One of the goals of this
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Fig. 2. Schematic of SIEMENS GT10B turbine and 10MV2A compressor.

Table 1. The type and installation locations of the sensors used in measuring the vibrations of the SIEMENS GT10B turbine.

Number of sensors | Installation location Sensor type

3 NDE-VIB, DE-VIB, NDE-DISP | Proximity probe Compressor
4 PT-AX, GG-AX Proximity probe Turbi

2 GGl1, GG2, PT3, PT4 Acceleration probe urbmne

(@)

Fig. 3. (a) VibroTest60 and (b) STD3300 model data loggers.

research is to provide a method for quick finding of im-
portant frequencies to diagnose the fault of an unknown
system. Also, because of the high impact of crankshaft
vibrations and other vibration sources unrelated to the tur-
bocompressor fault on the value of the time features, only
the frequency features are investigated.

First, the investigated frequency range, 10 to 6000 Hz in

(b)

this research, is divided into smaller ranges, and the RMS of
each range is extracted as a feature. In this research, the fre-
quency range is divided into 100 equal parts, and the RMS
of these parts forms the feature vector. Then, this feature
vector is given as input to the designed SVM algorithm,
which has the specifications shown in Table 4. In this case,
without using a filter, the SVM network has been able to



594

Baofan Chen et al.

Fig. 4. Different vibration sensors installed on the SIEMENS GT10B gas turbocompressor.
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Fig. 5. Vibration frequency spectrum of different points of the turbocompressor: (a) point DE, (b) point BRG1 and (c) point

correctly diagnose faulty and intact turbocompressors with
an accuracy of 80.9%, and the corresponding confusion
matrix can be seen in Fig. 7. Here, class zero corresponds
to faulty turbocompressors, and class one corresponds to
intact turbocompressors. As can be observed, this algo-
rithm has diagnosed 32.4% of intact turbocompressors as
faulty and 6.8% of faulty turbocompressors as intact, which
shows the rather improper accuracy of this model. This
error percentage is unacceptable considering the costs and

DEB.

time of replacing a turbocompressor.

In intelligent fault diagnosis systems, the feature extrac-
tion and selection process is very important quantitatively
and qualitatively. Suppose too many features are selected
without preliminary checks. In that case, the neural net-
work may be confused, and a large error will accompany
the fault diagnosis process. In this study, with preliminary
investigations, it was found that turbocompressor faults
did not increase the intensity of vibrations at all frequen-
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Fig. 6. The time response of the turbocompressor recorded at the NDE point.

Table 2. The specification of SIEMENS GT10B gas

turbocompressor.
Manufacturer Siemens Alstom
Model GT 10B
Year 2002
Condition Taiping Industrial
Power output 25.2MW
Hours 50000x Approx
Fuel type Natural Gas
Frequency 50 Hz
Turbine speed 4800rpm
Exhaust temperature  508°C

cies; at some frequencies, systems with faulty and intact
turbocompressors behave similarly (Fig. 8). For this reason,
a T-test filter was used inside the SVM network to remove
inappropriate features. The T-test is an inferential test for
parametric data analysis that examines the difference be-
tween the mean of a sample and the statistical population
or between the mean of two groups from two independent
populations. After applying the T-test filter, the feature
vector changes concerning the alpha coefficient and, as a re-
sult, the accuracy of the network. In the best case, with the
alpha coefficient of 0.17 and the selection of 22 frequency
features, the accuracy of the network is equal to 99.4%.
Fig. 9 shows the confusion matrix related to the SVM net-
work with the same specifications as Table 1 and with the
T-test filter. This shows the T-test filter’s positive effect on
the network’s accuracy.

4. Conclusion

As stated, the algorithm presented for diagnosing the gas
turbine compressor faults can be used to evaluate the sys-

Confusion Matrix
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[xv]
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5
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0 1
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Fig. 7. The SVM network confusion matrix without the
T-test filter.

tems on which preliminary investigation is being done.
According to the results of the present research, it can be
said that the presence of faults in this type of compressor
causes a noticeable increase in the intensity of vibrations.
As seen, without using the signal filter, the proposed algo-
rithm has diagnosed 32.4% of intact turbocompressors as
faulty and 6.8% of faulty turbocompressors as intact, which
shows the rather improper accuracy of this model. This
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Table 3. overall vibration velocity limiting for gas turbines.

vibration speed (mm/s) Evaluation zone boundary Criterion
1 45 A/B Acceptable
2 9.3 B/C Marginal
3 14.7 C/D Unacceptable

Table 4. The SVM algorithm specifications.

Kernel function RBF
Kernel function parameter (sigma) | 5
Penalty parameter 30
Size of the feature vector 100
Percentage of training data 70
Percentage of test data 30
0.6 T T T T T
Faulty
Healthy
_ 045 —
E
E
-'-; 0.3 -
= 0.15 -
0
0 1000 2000 3000 4000 5000 6000

Frequency (Hz)

Fig. 8. Frequency diagram of the amplitude of the
vibrations in a faulty turbocompressor compared to an
intact caase.

error percentage is unacceptable, considering the cost and
time of replacing a turbocompressor. If the T filter is used,
the accuracy of the network becomes 99.4%. The confu-
sion matrix related to the SVM network and the T-test filter
shows this filter’s positive effect on the network’s accuracy.
However, the proposed fault diagnosis model can be in-
tegrated more to achieve the ability to detect other types
of faults, such as spalling, inner race, etc. More integrated
models for lower correlation ranges can be considered for
future evaluations.
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