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This research work introduced an innovative forecasting approach that combined the Autoregressive – Long
Short-Term Memory (AR-LSTM) neural network with decomposition techniques and the Extended Kalman
Filter (EKF) to predict hourly day-ahead wind speed. The process started with data pre-processing, followed
by decomposition into three distinct components: trend, seasonal, and residual, using the Seasonal and
Trend decomposition using Loess (STL) filter. The forecasting process was designed to handle each of these
decomposed components independently. The trend and seasonal components were forecasted using the AR
model, utilizing historical patterns and temporal dependencies. On the other hand, the residuals were predicted
by a Long Short-Term Memory network, optimized through the application of the Extended Kalman Filter to
improve the filtering process. Predictions from these individual components were then combined to generate the
final wind speed forecast. To validate the proposed method, it was applied to real-world wind speed datasets
from both Hanoi and Tokyo. The model’s performance was systematically compared with alternative methods.
The results consistently demonstrated the superiority of the proposed approach over the three alternative
methods, as evidenced by the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute
Percentage Error (MAPE) metrics. Impressively low values of MAE and MSE, along with an impressive MAPE
value, were achieved, namely 6.79% and 10.3%, for hourly day-ahead wind speed prediction in Hanoi and
Tokyo, respectively. These findings underscore the robustness and effectiveness of the proposed model in
delivering highly accurate wind speed predictions for both geographical locations.
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1. Introduction

Due to the rapid economic development and the rise of
the living standard, the energy demand is more and more
increasing. However, the major issues of the traditional
fossil fuel-based energy that the world is facing are the
depletion of fossil fuels and their environmental adverse

impacts. These lead to the wide use of renewable energy
[1, 2]. Among which, wind energy has received exten-
sive global attention and rapidly developed in recent years
thanks to its advantages of abundant availability, compet-
itive cost, low carbon footprints [3]. However, with the
increasing wind power penetration, its drawbacks of inter-
mittent, randomness, and volatility will make challenging
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to the safety and stability of the power system [4, 5]. The
high stochasticity and low predictability of wind nature
can cause serious issues such as voltage and frequency fluc-
tuations, harmonics, etc. [6]. Forecasting the future wind
power accurately is one of promising solutions for these
challenges [7]. Especially day ahead predictions play an
important role for system operations. Wind power can be
predicted either directly using the historical wind power
data and meteorological data or undirectedly by forecast-
ing wind speed (WS) first, and then using a wind power
curve to produce wind power forecasts [8, 9]. The latter
option is necessary when the historical data of wind power
is incomplete or unavailable.

In literature, many WS forecasting approaches have
been proposed and implemented. Based on the modelling
theory, forecasting models can be divided into four types:
physical models, traditional statistical models, artificial in-
telligence (AI)-based models, and hybrid models [5]. Phys-
ical models, for example, numerical weather prediction
(NWP) usually take into account the physical considera-
tions of various meteorological factors to forecast WS by
using the mathematical model of the atmosphere [10]. This
approach was shown to be suitable for medium-term and
long-term WS forecasting [11]. Statistical models, which
include autoregressive (AR) model [12, 13], autoregressive
moving average (ARMA) [12], autoregressive integrated
moving average (ARIMA) [13], usually characterize the
linear fluctuation of WS. These models are effective in very
short-term and short-term WS forecasting. Thanks to the
advances in computer science, many AI-based models have
also been applied in predicting WS, such as MLP Neural
Network [14], RBF Neural network [15], artificial neural
network (ANN) [16]. The application of 1 single model
basically did not show good performance in prediction.
Then a combination of several methods was considered for
higher performance. In [17], an ensembled model of four
different types of ANNs were made with certain combi-
nation weights to forecast WS. Shi. et al. proposed two
hybrid models (ARIMA-ANN and ARIMA-SVM) to simul-
taneously extract linear and nonlinear fluctuations in WS,
and their performance was shown to be better than that of
single forecasting models [18].

Moreover, decomposition techniques were proven to
improve the forecasting accuracy [[5, 19, 20]. Wang et al.
[19] proposed a hybrid model of SSA (Singular Spectrum
Analysis) and a Laguerre neural network for wind speed
prediction. The wind speed series was decomposed using
SSA into low and high-frequency series, and these series are
forecasted by a Laguerre neural network. In [20], Zhang
et al. developed forecasting model based on a wavelet

method. The results showed that the model’s performance
had improved meaningfully.

Although numerous studies have been conducted in WS
forecasting methods, this issue is still challenging because
of the highly intermittent nature of wind speed. In this
paper, a hybrid model of statistical and AI-based method
combined with data pre-processing and decomposition
technique for day-ahead WS forecasting was proposed to
improve the forecast accuracy. First, the data was pre-
processed by the Spectral Residual (SR) method and de-
composed into trend, seasonal and residual series using
Seasonal and Trend decomposition using Loess filter (STL)
method. Then, the trend and seasonal components were
predicted using AR models while the residual series was
filtered by Extended Kalman Filter (EKF) before predicted
using Long Short-Term Memory (LSTM) neural network.
Finally, the obtained results were combined to receive the
forecasting of wind power. The proposed model was ap-
plied to 2 real WS series collected in Hanoi (Vietnam) and
Tokyo (Japan).

2. Proposed forecasting model

As mentioned above, using one single forecasting model
was not enough to accurately predict the time series, es-
pecially data with many fluctuations like WS. Various hy-
brid models have been developed and have also shown
their strengths in forecasting. In this paper, we proposed
a novel hybrid model of AR and LSTM neural network.
Moreover, because the time series of WS always have out-
liers/anomaly points, data need to be preprocessed before
being decomposed. The data was split into linear and non-
linear components. The linear components included trend
and seasonal series that would be predicted by a simple
but highly accurate model of AR. Meanwhile, the nonlin-
ear component was the residuals which were extremely
fluctuated and would be filtered using EKF to improve the
results. The filtered series was then forecasted by using
LSTM network. The proposed model (STL-EKF-AR-LSTM)
is shown in Fig. 1. The details of the models were presented
in the following subsection.

2.1. Data Pre-processing

The raw data of WS needs to be processed before predicting.
This process includes detecting outliers/anomaly/missing
values. WS is a time series with high uncertainties, which
leads to the presence of outliers/anomaly in the historical
data set. The main reasons for these values are due to
storage and communication errors [21, 22]. Therefore, it
is crucial to detect and remove the outliers/anomaly. In
this study, the Spectral Residual (SR) method, a simple yet
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Fig. 1. Structure of the proposed forecasting model
(STL-EKF-AR-LSTM).

powerful approach based on Fast Fourier Transform (FFT)
was applied [22]. The SR approach is unsupervised and has
been proved to be efficient and effective in visual saliency
detection applications. The algorithm consists of 3 steps
[23]:

• Fourier Transform: Temporal signals are transformed
into the frequency domain to analyze frequency struc-
tures.

• Log Amplitude Diagram: Computation of a log am-
plitude diagram using the logarithmic values of fre-
quency component amplitudes, focusing on smaller
values and reducing the influence of larger ones.

• Residual Spectrum Identification: Comparison of the
log amplitude diagram with a threshold to identify
residual spectra, indicating significant differences be-
tween actual and predicted signals. The threshold se-
lection is crucial and can be determined using statisti-
cal measures such as standard deviation or percentage
of residuals.

2.2. Decomposition

Time series data is usually decomposed into 4 following
components: Trend, Seasonality, Cyclic, and Irregular re-
mainder. There are a lot of decomposition methods such as
classical decomposition, X11 decomposition, Seasonal and
Trend decomposition using Loess filter (STL) decomposi-
tion [24, 25], etc. Among the mentioned methodologies,
classical decomposition and X11 decomposition exhibit a
relatively simplistic approach, better suited for datasets
showcasing evident and uncomplicated patterns. In con-
trast, the Seasonal and Trend decomposition using Loess

filter (STL) method is renowned for its versatility in cap-
turing intricate and non-linear trends, as well as seasonal-
ity commonly encountered in real-world time series data.
Hence, it was deemed fitting for our study, where an ef-
fective methodology was imperative to adeptly model the
intricate patterns inherent in wind speed data. As a result,
STL was selected due to its robustness and efficiency. In
this study, we employed the STL method to decompose
WS data into three essential components: Trend, Season-
ality, and Residuals. These components constituted the
foundational input for the subsequent forecasting steps.

2.3. Extended Kalman Filter

Kalman Filter is a Linear-Gaussian State Space Model,
which is named after Rudolf E. Kalman who introduced
the algorithm through its famous research in 1960. Kalman
Filter is expanded from the development of Gauss’ Orig-
inal Development of Least Squares to estimate unknown
parameters of a model. To respond to nonlinear issues,
the new Kalman Filter has been developed with the name
Extended Kalman Filter (EKF). In order to use the EKF to
estimate the inside status of a process only gives a sequence
of noise observations, the state transition and observation
model do not need to be linear functions of state [26]:

xk = f (xk−1, uk) + wk (1)

zk = h (xk) + vk (2)

Where, uk is the control vector, wk and vk are the noises
of process and observation which are assumed to be zero-
mean multivariate Gaussian noises with covariance Qk and
Rk.

The algorithm of Kalman Filter including 2 stages can
be illustrated as following:

Time Update: x−n , priori state estimate and P−
n , priori

estimate error covariance at step n based on the previous
time step values are:

x−n = Fxn−1 (3)

P−
n = FPn−1FT + GQGT (4)

Measurement Update: when the new observation value
yn is known, the estimate of xn at time n will be calculated
by:

xn = x−n + Kn
(
yn − Fx−n

)
(5)

The Kalman Filter gain Kn and the estimate covariance
Pn at n :

Knxn = P−
n HT

(
HP−

n HT + R0

)−1
(6)

Pn = (I − Kn H) P−
n (7)

Where F and H are state transition matrix and measurement
matrix respectively, I is identity matrix.
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2.4. Autoregressive model

Autoregressive (AR) model is a model that estimate the
future value of a time series by using a linear combination
of past values of the variable. The term autoregression
indicates that it is a regression of the variable against itself.
An autoregressive model of order p, AR(p), can be written
as

Yt = µ + ϕ1Yt−1 + ϕ2Yt−2 + . . . + ϕpYt−p + εt (8)

where Yt is the value of Y at t, ϕ1, . . . , ϕp denote the param-
eters, εt is the variance of the error term.

The order p was selected based on the autocorrelation
(ACF) and partial autocorrelation (PACF) of the WS series
with its lags, meanwhile the other parameters were esti-
mated using the maximum likelihood [2]. The equation of
ACF and PACF was shown in (9), (10), respectively.

ACFk =
∑n

t=k+1 (yt − ȳ) (yt−k − ȳ)

∑n
t=1 (yt − ȳ)2 (9)

PACF k =

Cov (yt, yt−k∥yt−1, yt−2, . . . , yt−k+1)√
Var (yt∥yt−1, yt−2, . . . , yt−k+1) · Var (yt−k∥yt−1, yt−2, . . . , yt−k+1)

(10)
Where, yt and yt−k are the values of the time series at time
t and t − k, respectively.

In this paper, we used the AR(1) model to forecast the
linear components such as Trend and Seasonal string.

2.5. Long short-term memory model

LSTM network, which is one sort of the recurrent neural
network (RNN), has the advantage in the relatively long-
term memory of valuable information [27–30]. This makes
it broadly used in time series prediction.

Fig. 2 shows the structure of a LSTM cell. It has 3 gates:
input, forget and output gate. The input gate controls
whether the new state of the calculation can be updated
to the memory unit. The forget gate controls the forgotten
information in the previous memory unit. The output gate
regulates the extent to which the current output depends
on the current memory unit [5, 28].

Forget gate: The forget gate in a LSTM network decides
what information from the previous cell state should be
discarded or remembered. It uses the current input and
the previous hidden state to determine how much of the
previous cell state to keep.

ft = σ ·
(

W f · [ht−1, xt] + b f

)
(11)

Input gate: The input gate controls the update of the
cell state with new information. It decides which portions

of the new input and the previous hidden state should be
added to the cell state to update its information.

it = σ · (Wi · [ht−1, xt] + bi) (12)

Output gate: The output gate selects relevant portions
of the cell state to be the actual output of the LSTM cell. It
filters and transforms the cell state before producing the
output, ensuring that the relevant information is utilized
for predictions or downstream tasks.

ot = σ · (Wo · [ht−1, xt] + bo) (13)

C̃t = tanh · (WC · [ht−1, xt] + bc) (14)

Ct = ft ∗ Ct−1 + it ∗ C̃t (15)

Where ft, it, C̃t, ot are the output values of the forget gate,
input gate, update signal, and output gate, respectively.
Wi,f,o,c are the weight matrix of each layer. b f ,i,o are the
bias of each gate and by is the output bias. σ is a nonlinear
activation function.

Fig. 2. The structure of a LSTM cell.

2.6. Evaluation metrics

This study employed various evaluation criteria to assess
the effectiveness of the forecasting system. Specifically, it
focused on point forecasting criteria, which evaluated the
accuracy of individual predictions. The utilized evalua-
tion metrics included the mean squared error (MSE), which
measured the average difference between projected and
observed values. Additionally, the mean absolute error
(MAE) was also applied to measure the average difference
between projected and actual values. Furthermore, the
mean absolute percentage error (MAPE) was computed to
represent the average percentage difference between pro-
jected and actual values. These metrics served as reference
points for evaluating the accuracy and reliability of the
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Fig. 3. The wind speed time series in Tokyo (2014) and Hanoi (2018).

forecasting system. The corresponding formulas for these
criteria were presented in equations (16), (17), and (18).

MSE =
1
n
∗ ∑

(
ytrue − ypred

)2
(16)

MAE =
1
n
∗ ∑

∣∣∣ytrue − ypred

∣∣∣ (17)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ytrue − ypred

ytrue

∣∣∣∣ (18)

When ytrue is the true values, ypred is the forecasting val-
ues, n is the number of sample data.

3. Result and discussion

3.1. Data samples and preprocessing

The WS data used in the study has been collected from the
original website of the Vietnamese and Japanese Meteo-
rological Agency, data sampled by hour for 1 year (2018).
Fig. 3 shows the change of wind speed in Tokyo and Hanoi
over time. In Tokyo, WS ranges from 0 to 12 m/s, whereas
in Hanoi, it typically stays within the 0-9 m/s range.

As mentioned above, the input data needs to be pro-
cessed, removed unusual points by SR method and decom-
posed into 3 different components. After using SR, we
have been able to eliminate anomalies. We proposed using
EKF to filter out the noise components and using the STL
model to decompose the new data into 3 parts as shown in
Fig. 4. The trend and seasonal components have a simpler
form than the remainder series. Moreover, based on the
residual plots, it is evident that the oscillations in Tokyo for
the year 2014 fluctuated more than that of Hanoi in 2018.
Specifically, the residual of WS in Tokyo exhibited a range
of oscillations from 0 to 5, whereas that in Hanoi ranged
from 0 to 2.5.

3.2. Model parameters estimation

The ACF and PACF of trend and seasonal components of
the WS series at two locations were calculated. Figure 5
illustrated the ACF and PACF of the trend component of

Fig. 4. The result of STL decomposition model for wind
speed in Tokyo and Hanoi.

the Hanoi WS dataset. From the results, it can be observed
that the present value mainly depended on the 1-lag value.
Consequently, the order of AR in this case was selected as
1. Similarly, the order of AR models for the seasonal series
and for Tokyo’s series was determined. The lag settings
used in this study pertain to the time intervals between
data samples within the time series. This means that when
computing the auto-correlation function (ACF), the level of
correlation between a current value and past values at time
intervals specified by the chosen lag was determined. By
identifying these lags, the correlation between data values
in the time series could be analyzed, and significant corre-
lation patterns during the analysis and modeling process
could be identified.

This study implemented a neural network model using
Python, employing the popular LSTM architecture to han-
dle the nonlinearity in the Residual component. The model
was structured with multiple layers, each configured with
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specific parameters:

• The first layer was an LSTM layer with 128 units and
a dropout rate of 0.2: LSTM (128), Dropout = 0.2

• The second layer was another LSTM layer with 64
units and a dropout rate of 0.2: LSTM (64), Dropout =
0.2

• The final layer was a Dense layer with 24 units: Dense
= 24.

Fig. 5. ACF and PACF of trend component of WS series in
Hanoi (2018).

3.3. Forecasting result and comparison with other meth-
ods

In order to demonstrate the effectiveness of the proposed
model, 3 models of ARMA(1,1) model, LSTM model and
the combination of decomposition and AR-LSTM model
without EKF were used to predict the WS and compare
with the proposed model. Fig. 6 presents the forecasting
value of WS using 4 models and the actual value of WS in
2 locations. The proposed model would obtain better per-
formance in forecasting. The difference in errors between
the AR-LSTM model and the proposed model is because
of the participation of the EKF. EKF filtered the noise from
the residual components, making them less fluctuated and
stochastic, thus being better trained and resulting in better
performance in forecasting.

To evaluate the accuracy of the proposed method, we
estimated the criteria of MAPE (%), MSE and MAE of the
prediction and compared it with other methods. Table 1
showed the comparison of evaluation metrics when fore-
casting the WS in Tokyo and Hanoi using 4 mentioned

methods. In the context of data from Hanoi, the anal-
ysis of comparing MAPE values has revealed that the
"ARMA(1,1)" method achieves the highest MAPE value of
24.39%. Immediately following, the "LSTM" model attains
a MAPE of 22.88%, followed by the "AR-LSTM" approach
with a MAPE value of 14.72%. This analysis sheds light
on the capabilities of the AR-LSTM combined model in en-
hancing performance compared to individual methods. No-
tably, the proposed "STL-EKF-AR-LSTM" model achieves
the lowest MAPE value, at only 6.79%. This significant re-
duction compared to alternative methods underscores the
model’s prowess in minimizing prediction errors, further
accentuating the importance and rationale for method in-
tegration. The two remaining error metrics exhibit similar
trends to MAPE.

For the Tokyo dataset, the comparison of MAPE val-
ues reveals that the LSTM method obtains the highest
MAPE value at 34%, followed by the ARMA(1,1) method
at 27.93%, and the AR-LSTM method with a MAPE value
of 15.4%. This comparative analysis elucidates the notable
efficacy of the combined AR and LSTM methods. Fur-
thermore, the proposed model continues to outperform
across all three-error metrics, achieving the lowest MAPE
value of 10.3%. The comparison between the two geo-
graphical locations highlights the consistent prominence
of the proposed model (STL-EKF-AR-LSTM) as the most
accurate forecasting method for all error metrics in both
Hanoi and Tokyo. The distinct divergence in error values
among methods emphasizes the substantial improvements
the proposed model brings when compared to alternative
approaches. The AR-LSTM combined model stands out
markedly in enhancing prediction accuracy compared to
the other models. The MAPE analysis demonstrates that
AR-LSTM provides better performance than both individ-
ual ARMA(1,1) and LSTM models. The amalgamation of
LSTM’s modeling capability and AR’s predictive strength
significantly enhances data wind estimation. Moreover,
the proposed model (STL-EKF-AR-LSTM) maintains its
prominence over the AR-LSTM model. The integration
of Extended Kalman Filter (EKF) and AR-LSTM benefits
data separation and information update at each time step,
simultaneously reducing the influence of noise and state
space transformations in the prediction model. This em-
phasizes that the proposed model not only harnesses the
advantages of AR-LSTM but also optimizes the integration
of data separation and information filtering, consequently
improving accuracy and confidence in wind prediction.

Nevertheless, in comparison between the 2 locations,
the total forecasting results of Hanoi’s WS were better than
Tokyo’s WS. This can be explained by their geography.
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Table 1. Evaluation metrics of forecasting WS in Hanoi and Tokyo.

Forecasting method MAPE (%) MSE MAE
Hanoi ARMA(1,1) 24.39 0.9 0.62

LSTM 22.88 0.5 0.52
AR-LSTM 14.72 0.44 0.34
Proposed model (STL-EKF-AR-LSTM) 6.79 0.05 0.17

Tokyo
ARMA(1,1) 27.93 0.4 0.5
LSTM 34 0.7 0.7
AR-LSTM 15.4 0.3 0.4
Proposed model (STL-EKF-AR-LSTM) 10.3 0.1 0.2

Tokyo is a coastal city, so it will suffer a lot of influence
from the sea and pressures, leading to the unstable and
strong fluctuation in WS, then the error in the forecasting
will be quite large. Unlike Tokyo, Hanoi is on the mainland,
so the wind data will be more stable, and the forecasting
accuracy is also higher. These values are not only much
smaller than those of other methods but also considerably
good value when compared with other studies on hourly
day ahead WS forecasting in reference.

Fig. 6. The forecasting result of (a) Tokyo and (b) Hanoi.

4. Conclusion

This paper proposed a high-accuracy hybrid model of STL-
EKF-AR-LSTM for day ahead WS forecasting. The model
included 4 stages: data pre-processing, decomposition,
forecasting and composition. After the WS data is decom-
posed by STL, the AR model was used to predict the linear
components while LSTM model was used to predict the
nonlinear component. Additionally, in order to improve
the forecasting performance, EKF was adopted to filter
the noise out of residual series before inputting it into the
LSTM model. The proposed method was applied to WS

in Tokyo and Hanoi. Calculation of the evaluation metrics
such as MAPE, MAE and MSE was carried out. The results
show that the proposed method obtained the lowest error
in forecasting when compared with 3 different methods.
Moreover, Hanoi WS has better forecasting performance
than Tokyo WS because its WS is more stable than Tokyo’s.
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