Murat BakirciThis email address is being protected from spambots. You need JavaScript enabled to view it.

Faculty of Aeronautics and Astronautics, Tarsus University, Mersin 33400, Turkey


 

Received: November 15, 2022
Accepted: February 9, 2023
Publication Date: March 23, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202312_26(12).0006  


In this study, the dependence of the ionic current rectification (ICR) phenomenon on the charge and concentration of the electrolyte solution in a conical nanochannel was investigated experimentally. Moreover, the dependence of current rectification on the tip radius of the nanochannel was also investigated. A thermoplastic polyurethane membrane with a conical nanochannel in the center was used in the experiments. ICR is represented as diodelike current-to voltage curves where the current recorded for one voltage polarity is higher than the current recorded for the same absolute voltage value in the opposite polarity. Through the experiments, it is revealed that the amount of ICR that occurs in a conical nanochannel can be adjusted by three different parameters. First, it is shown that current rectification increases with increasing charge, when the concentration of the electrolyte is kept constant and its charge is changed. Thus, the amount of ICR can be increased by up to 88% through altering the charge of the electrolyte. It is also observed that the current rectification can be changed up to 7 times when the electrolyte concentration is modified. Finally, in the case where no change is made in the electrolyte but the nanochannel tip radius is increased, it is observed that the ionic current rectification can be changed up to 4.6 times. In all three cases, it is concluded that the amount of ionic current in a conical nanochannel can be controlled when proper modification is made to the electrolyte or the tip radius of the nanochannel.


Keywords: current rectification, electrokinetic flow, electrical double layer, rectification coefficient, asymmetric nanochannel


  1. [1] S. J. Davis, M. Macha, A. Chernev, D. M. Huang, A. Radenovic, and S. Marion, (2020) “Pressure-induced enlargement and ionic current rectification in symmetric nanopores" Nano letters 20(11): 8089–8095. DOI: 10.1021/acs.nanolett.0c03083.
  2. [2] J.-P. Hsu, S.-T. Yang, C.-Y. Lin, and S. Tseng, (2017) “Ionic current rectification in a conical nanopore: Influences of electroosmotic flow and type of salt" The Journal of Physical Chemistry C 121(8): 4576–4582. DOI: 10 .1021/acs.jpcc.6b09907.
  3. [3] C. Wen, S. Zeng, S. Li, Z. Zhang, and S.-L. Zhang, (2019) “On rectification of ionic current in nanopores" Analytical chemistry 91(22): 14597–14604. DOI: 10.1021/acs.analchem.9b03685.
  4. [4] L. Ma, Z. Li, Z. Yuan, C. Huang, Z. S. Siwy, and Y. Qiu, (2020) “Modulation of ionic current rectification in ultrashort conical nanopores" Analytical Chemistry 92(24): 16188–16196. DOI: 10.1021/acs.analchem.0c03989.
  5. [5] J.-Y. Lin, C.-Y. Lin, J.-P. Hsu, and S. Tseng, (2016) “Ionic current rectification in a pH-tunable polyelectrolyte brushes functionalized conical nanopore: effect of salt gradient" Analytical chemistry 88(2): 1176–1187. DOI: 10.1021/acs.analchem.5b03074.
  6. [6] Z. Siwy, P. Apel, D. Dobrev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, (2003) “Ion transport through asymmetric nanopores prepared by ion track etching" Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 208: 143–148. DOI: 10.1016/S0168-583X(03)00884-X.
  7. [7] T. Ma, P. Gaigalas, M. Lepoitevin, I. Plikusiene, M. Bechelany, J.-M. Janot, E. Balanzat, and S. Balme, (2018) “Impact of polyelectrolyte multilayers on the ionic current rectification of conical nanopores" Langmuir 34(11): 3405-3412. DOI: 10.1021/acs.langmuir.8b00222.
  8. [8] Y. Qiu, Z. S. Siwy, and M. Wanunu, (2018) “Abnormal ionic-current rectification caused by reversed electroosmotic flow under viscosity gradients across thin nanopores" Analytical chemistry 91(1): 996–1004. DOI: 10.1021/acs.analchem.8b04225.
  9. [9] C. Fang, P. Zhao, B. Cui, L. Wang, D. Liu, and S. Xie, (2010) “Current rectification in single molecule C59N: Effect of molecular polarity induced dipole moment" Physics Letters A 374(43): 4465–4470. DOI: 10.1016/j.physleta.2010.09.004.
  10. [10] A. Sadeghi, M. Azari, and S. Hardt, (2019) “Electroosmotic flow in soft microchannels at high grafting densities" Physical Review Fluids 4(6): 063701. DOI: 10.1103/PhysRevFluids.4.063701.
  11. [11] M. Khatibi, S. N. Ashrafizadeh, and A. Sadeghi, (2020) “Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification" Analytica Chimica Acta 1122: 48–60. DOI: 10.1016/j.aca.2020.05.011.
  12. [12] C. Kubeil and A. Bund, (2011) “The role of nanopore geometry for the rectification of ionic currents" The Journal of Physical Chemistry C 115(16): 7866–7873. DOI: 10.1021/jp111377h.
  13. [13] R. B. Schoch, H. Van Lintel, and P. Renaud, (2005) “Effect of the surface charge on ion transport through nanoslits" Physics of Fluids 17(10): 100604. DOI: 10.1063/1.1896936.
  14. [14] S. Pennathur and J. G. Santiago, (2005) “Electrokinetic transport in nanochannels. 2. Experiments" Analytical chemistry 77(21): 6782–6789. DOI: 10.1021/ac0508346.
  15. [15] J. Zhao, G. He, S. Huang, L. Villalobos, M. Dakhchoune, H. Bassas, and K. Agrawal, (2019) “Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation" Science advances 5(1): eaav1851. DOI: 10.1126/sciadv.aav1851.
  16. [16] O. N. Assad, T. Gilboa, J. Spitzberg, M. Juhasz, E.Weinhold, and A. Meller, (2017) “Light-enhancing plasmonic-nanopore biosensor for superior singlemolecule detection" Advanced Materials 29(9): 1–9. DOI: 10.1002/adma.201605442.
  17. [17] J. D. Spitzberg, A. Zrehen, X. F. van Kooten, and A. Meller, (2019) “Plasmonic-nanopore biosensors for superior single-molecule detection" Advanced Materials 31(23): 1900422. DOI: 10.1002/adma.201900422.
  18. [18] L. Liu and K. Zhang, (2018) “Nanopore-based strategy for sequential separation of heavy-metal ions in water" Environmental science & technology 52(10): 5884–5891. DOI: 10.1021/acs.est.7b06706.
  19. [19] M. Shankla and A. Aksimentiev, (2019) “Step-defect guided delivery of DNA to a graphene nanopore" Nature nanotechnology 14(9): 858–865. DOI: 10.1038/s41565-019-0514-y.
  20. [20] C. A. Morris, A. K. Friedman, and L. A. Baker, (2010) “Applications of nanopipettes in the analytical sciences" Analyst 135(9): 2190–2202. DOI: 10.1039/C0AN00156B.
  21. [21] X. Shi, D. V. Verschueren, and C. Dekker, (2018) “Active delivery of single DNA molecules into a plasmonic nanopore for label-free optical sensing" Nano letters 18(12): 8003–8010. DOI: 10.1021/acs.nanolett.8b04146.
  22. [22] Y. Feng, Y. Zhang, C. Ying, D. Wang, and C. Du, (2015) “Nanopore-based fourth-generation DNA sequencing technology" Genomics, proteomics & bioinformatics 13(1): 4–16. DOI: 10.1016/j.gpb.2015.01.009.
  23. [23] J. Sengenès, A. Daunay, M.-A. Charles, and J. Tost, (2010) “Quality control and single nucleotide resolution analysis of methylated DNA immunoprecipitation products" Analytical biochemistry 407(1): 141–143. DOI: 10.1016/j.ab.2010.07.013.
  24. [24] C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, K. Venta, Z. Luo, A. C. Johnson, et al., (2010) “DNA translocation through graphene nanopores" Nano letters 10(8): 2915–2921. DOI: 10.1021/nl102069z.
  25. [25] D. M. Vlassarev and J. A. Golovchenko, (2012) “Trapping DNA near a solid-state nanopore" Biophysical Journal 103(2): 352–356. DOI: 10.1016/j .bpj.2012.06.008.
  26. [26] R. Chen, R. J. Balla, A. Lima, and S. Amemiya, (2017) “Characterization of nanopipet-supported ITIES tips for scanning electrochemical microscopy of single solid-state nanopores" Analytical chemistry 89(18): 9946–9952. DOI: 10.1021/acs.analchem.7b02269.
  27. [27] M. Nazari, A. Davoodabadi, D. Huang, T. Luo, and H. Ghasemi, (2020) “On interfacial viscosity in nanochannels" Nanoscale 12(27): 14626–14635. DOI: 10.1039/D0NR02294B.
  28. [28] S. Fujiwara, K. Morikawa, T. Endo, H. Hisamoto, and K. Sueyoshi, (2020) “Size sorting of exosomes by tuning the thicknesses of the electric double layers on a micronanofluidic device" Micromachines 11(5): 458. DOI:
    10.3390/mi11050458.
  29. [29] A. Alizadeh, W.-L. Hsu, M. Wang, and H. Daiguji, (2021) “Electroosmotic flow: From microfluidics to nanofluidics" Electrophoresis 42(7-8): 834–868. DOI: 10.1002/elps.202000313.
  30. [30] A. Gupta, P. J. Zuk, and H. A. Stone, (2020) “Charging dynamics of overlapping double layers in a cylindrical nanopore" Physical review letters 125(7): 076001. DOI: 10.1103/PhysRevLett.125.076001.
  31. [31] F. Baldessari, (2008) “Electrokinetics in nanochannels: Part I. Electric double layer overlap and channel-to-well equilibrium" Journal of colloid and interface science 325(2): 526–538. DOI: 10.1016/j.jcis.2008.06.007.