R.G. Ikramov, M.A. Nuriddinova, Kh. A. MuminovThis email address is being protected from spambots. You need JavaScript enabled to view it., O.T. HolmirzaeV, and B.Q. Sultonov

Namangan Engineering and Technology Institute, 7 Kosonsoy Street, Namangan 160115, Uzbekistan


 

Received: July 1, 2022
Accepted: September 20, 2022
Publication Date: November 2, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202308_26(8).0012  


ABSTRACT


The region of exponential absorption of the spectra of amorphous semiconductors is theoretically investigated using the Davis-Mott approximation method from the Kubo-Greenwood formula. Analytical expressions for the partial absorption spectra for the exponential region are derived from two different types of the Kubo-Greenwood formula. A new method is presented for calculating the distribution density of electronic states in the tails of the conduction band of amorphous semiconductors based on the analytical expression for experimental exponential absorption spectra. The density of electronic states in the tail of the conduction band of an amorphous solid selenium-sulfur alloy is determined from the experimental exponential absorption spectrum of this material.


Keywords: exponential region of absorption spectra, partial absorption spectra, tail of the conduction band, distribution of the density of electronic states


REFERENCES


  1. [1] S. Zajnobidinov, R. Ikramov, M. Nuritdinova, and R. Zhalalov, (2008) “Dependence of the Urbach energy on the Fermi level in A-Si: H films" Ukrayins’ kij Fyizichnij Zhurnal (Kyiv) 53(12): 1178–1181.
  2. [2] Z. Li, S. H. Lin, G. M. Qiu, J. Y. Wang, and Y. P. Yu, (2018) “A method for determining band parameters from the optical absorption edge of amorphous semiconductor: Application to a-Si:H" Journal of Applied Physics 124(2): DOI: 10.1063/1.5025920.
  3. [3] R. Ikramov, A. Mamaxanov, M. Nuriddinova, R. Jalolov, K. Muminov, and B. Sultonov, (2022) “Calculation of the interband absorption spectra of amorphous semiconductors using the Kubo-Greenwood formula" Journal of Applied Science and Engineering (Taiwan) 25(5): 767–772. DOI: 10.6180/jase.202210_25(5).0007.
  4. [4] S. Zaynobidinov, R. Ikramov, and R. Jalalov, (2011) “Urbach energy and the tails of the density of states in amorphous semiconductors" Journal of Applied Spectroscopy 78(2): 223–227. DOI: 10.1007/s10812-011-9450-9.
  5. [5] G. D. Cody. HYDROGENATED AMORPHOUS SILICON, OPTICAL PROPERTIES. 21. Cited by: 15. 1984.
  6. [6] S. K. O’Leary, (1999) “On the relationship between the distribution of electronic states and the optical absorption spectrum in amorphous semiconductors" Solid State Communications 109(9): 589–594. DOI: 10.1016/S0038-1098(98)00605-X.
  7. [7] R. Ikramov, M. Nuriddinova, K. Muminov, R. Zhalalov, et al., (2020) “Temperature Dependence of Urbach Energy in Non-Crystalline Semiconductors" Optics and Photonics Journal 10(09): 211.
  8. [8] N. Djalilov and G. Damirov, (2011) “Pogloshenie I spektri opticheskix parametrov v amorfnix tverdix rastvorax sistemi Se-S" Fizika i Texnika Poluprovodnikov 45(4): 500–505.
  9. [9] R. Ikramov, M. Nuriddinova, and K. Muminov, (2021) “Calculation of the Density of Electronic States in the Valence Band from Experimental Interband Absorption Spectra of Amorphous Semiconductors" Journal of Applied Spectroscopy 88(3): 501–505. DOI: 10.1007/s10812-021-01200-9.
  10. [10] I. R. N. M.A. and M. Kh.A, (2021) “A new method for determining the distribution of the density of electronic states on the tail of the valence band of amorphous semiconductors" Optics and Spectroscopy 129(11): DOI:10.21883/OS.2021.11.51636.1949-21.
  11. [11] I. Bronshtein and K. Semendyaev. Handbook of Mathematics for Engineers and Technical University Students. 1986.