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The main goal of the present study is to examine the performance of novel draw solutions to extract high-
quality water from simulated brackish water. Three different types of draw solutions namely L-ascorbic acid,
L-aspartic acid, and thiourea. The current draw solutions’ performance was measured in terms of average water
flux (LMH) and average reverse solute flux (g/m2h). The impact of several parameters on FO desalination
performance, such as draw solution type, feed water concentration, draw solution concentration, and membrane
orientation mode, was investigated. Ascorbic acid (vitamin C) was shown to have better FO performance in
terms of high water flow up to 7.5 LMH and negligible reverse solute flux among the various types of draw
solutions studied. The suggested FO technique can extract clean water to dilute the vitamin C draw solution up
to the daily vitamin C in drinking water dose limit. Immune system deficits, cardiovascular illness, maternal
health difficulties, eye disease, and even skin wrinkling may be protected by the supplemented vitamin C
drinking water created. Some specialists recently recommended taking 200 mg of vitamin C daily for COVID-19
prophylaxis or 1-2 grams for COVID-19 treatment, according to some experts.
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1. Introduction

The world’s population is quickly growing and concerns
like freshwater, food, and energy are having a major in-
fluence on global economies. As one of three factors in
the energy-water-food nexus, clean water shortage has
long been a major problem for many communities. To-
day, over two billion people lack access to safe and clean
water [1]. Egypt presently has a water shortage of around
13.5 billion m3/y, which is likely to grow in the coming
years [2]. Desalination and water reuse are gaining popu-
larity as solutions to this problem and to fulfill the rising
demand for clean water. Reverse osmosis (RO) and ther-
mal processes are two of the current desalination technolo-

gies. Around the world, there are over 18,000 desalination
plants in operation, with a total output capacity of 38 bil-
lion m3/year, which is anticipated to rise by 2030 [3]. On
the other hand, conventional desalination methods are be-
lieved to be energy-intensive, with energy consumption
accounting for 50-60% of overall water production costs [3].
Forward osmosis (FO), a relatively new membrane-based
desalination method, utilizes a highly concentrated draw
solution (DS) to pull water from a feed solution (FS) via a
semi-permeable membrane [4]. Forward osmosis (FO) is
an innovative membrane technology that recieved a lot of
attention in the recent decade since it is a low-energy desali-
nation method. The availability of efficient draw solutions
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(DS), which must offer high osmosis pressure and minimal
reverse solute flux, is one of the most critical difficulties
facing FO. FO uses less energy, has a better antifouling
capability, and recovers more water than RO [4]. DS is im-
portant to the FO process since it is the major source of net
driving force across the membrane. High solubility, high
osmotic pressure, low molecular weight (MW), low cost
of regeneration, good membrane compatibility, minimal
reverse solute flow, nontoxicity, and so on are all desir-
able characteristics of a perfect DS [4]. Traditional draw
solutions based on inorganic salts like NaCl, MgCl2, and
NH4HCO3 can create a high water flow, but they also pro-
duce a large reserve flux of solute, compromising product
quality and raising replenishment costs [5]. Furthermore,
an efficient way for generating clean water from these draw
solutions is lacking. To overcome the inherent drawbacks
of inorganic solutes, several novel draw solutions have
been developed recently, including synthetic organic so-
lutes [6, 7], polyelectrolytes [8–11], magnetic nanoparticles
[12], polymer hydrogels [13–16], switchable polarity sol-
vents [17], and ionic liquids [18, 19]. The simplicity and
effectiveness of any of these DS recovery and separation
technologies will be critical elements in FO desalination for
portable applications’ future success. Thermal separation,
membrane separation, chemical precipitation, and stimuli-
responsive recovery (e.g. light, electricity, magnetic field,
etc) [20] are some of the different draw solution recovery
procedures. It is worth mentioning that despite the high
potential that the FO process has, it has not yet been fully
commercialized due to several challenges. one of these
critical challenges is the high energy cost for the DS re-
generation process as it has a great impact on the energy
efficiency. Therefore, it is necessary to develop suitable
DS to break through the bottleneck of FO’s development
toward the practical application. FO would have a sub-
stantial advantage over RO desalination technology if the
diluted draw solution could be utilized directly without
the requirement for DS separation and regeneration. These
FO methods have recently been effectively utilized in arid
regions for drinking [21], fertilization [22], irrigation, and
soil prevention [23], where concentrated fertilizer solutions
are used as DS, diluted, and then used for irrigation.

The major objective of this study is to assess the viability
of using three different types of draw solutions namely
L-ascorbic acid, L-aspartic acid, and thiourea.

To this end the major objective of this study is to assess
the viability of using three different types of draw solutions
namely L-ascorbic acid (vitamin C) and L - aspartic acid
(an essential human body amino acid), and thiourea (plant
growth improver). To the best of our knowledge no previ-

ous studies have examined vitamins as draw solution. It is
attended in the present work that the diluted draw solution
of both L-ascorbic acid (vitamin C), L - aspartic acid (an es-
sential human body amino acid) would be used directly for
drinking after dilution to the daily adult dosage of vitamin
C and L-aspartic acid respectively. Whereas the diluted DS
of thiourea would be used directly for irrigation.

The drinking water fortified with vitamin C would im-
prove in general the immunity system of human body.
Since vitamin C is essential for the synthesis of collagen,
a protein important in the formation of connective tissue
and in wound healing. It acts as an antioxidant, protecting
against damage by reactive molecules called free radicals.
The vitamin also helps in stimulating the immune system.

L - aspartic acid fortified drinking water would help
fight against chronic fatigue and helps with improving me-
tabolization, removing toxins, increasing building muscle
mass. So far L - aspartic acid fortified drinking water is rec-
ommended for the athletes to provide them with essential
amino acids. The performance of the suggested DS will
be expressed in terms of water flux (LMH). The effect of
different parameters will be examined such as the initial
concentration of feed solution, initial concentration of the
draw solution, and the membrane orientation.

2. Materials and methods

2.1. Materials

Table 1 lists the chemical and reagent specifications used in
this study. The experiments were carried out using the FO
lab unit depicted in Fig. 1. The FO lab unit consists mainly
of a flow system and a membrane unit. The flow system
includes two storage tanks, two liquid flow meters (Z-3000,
China), in addition to two 1.25 LPM diaphragm pumps
(DBP0202, Taiwan). One pump discharges the feed solu-
tion, while the other discharges the draw solution. A silicon
piping system is connecting between the various parts of
the flow system. A flat sheet of polyamide membrane (cat-
alog no. TFC- 75F) provided by (Aqua Filter, USA) divides
the membrane unit into two identical channels of dimen-
sions 10×8×0.6 cm3. One channel is feed solution whereas
the other is draw solution.

2.2. FO unit Performance Evaluations

In a one-liter measuring flask, different types of draw so-
lutions of 1 M concentration were created by dissolving
sufficient weight in distilled water. Whereas in the case
of preparation of 1 M of Sodium L-aspartate, 133 g of L-
aspartic acid was dissolved in a 2 M NaOH solution. Dis-
tilled water and simulated brackish water with different
salinities were used as feed solutions. The two storage
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Table 1. Specifications of the chemicals and reagents used in the present work.

Chemical Formula Supplier Purity
Ascorbic Acid C3H8O6 Alpha ChemicKa 99.8%

Sodium chloride NaCl ElNasr Chemicals 99.5%
L-Aspartic acid C4H7NO4 Caisson Labs USP Grade

Sodium hydroxide NaOH AlAhram Chemicals 98%
Buffer solutions Fisher Chemicals pH = 10

Fig. 1. FO lab unit set up 1) A membrane cell 2) Two
flowmeters 3) Feed solution tank 4) Draw solution tank 5)

Two Diaphragm pumps 6) Digital balance.

tanks were filled with half liters of feed and draw solu-
tions, respectively, before each cycle. Both feed and draw
solutions were circulated through the membrane unit in a
co-current pattern at a constant flow rate of 1.25 LPM. All
runs were conducted at a constant temperature of 25±2
ºC. The increase of the weight in DS was recorded using
a digital balance (SF-400A, China) within intervals of 10
minutes during the run. The following equation was used
to compute the water flux at any given time.

Jw =
Vt − Vi
A × t

(1)

Where Jw is the water flux in LMH, Vt is the volume of
draw solution at time t in a liter, Vi is the initial volume of
the draw solution in liter, A is the active membrane area
in m2 and t is the time in h. The water flux was estimated
by monitoring the rise in the feed solution’s conductivity
over time in studies where the feed solution was simulated
brackish water. The conductivity of FS can be expressed in
terms of concentration according to the following equation:

λ = B × Ct (2)

Where λ is the conductivity of the FS (mSm), B is the slope
of the calibration curve and Ct is the concentration of FS
(ppm).

Fig. 2 shows a plot of conductivity versus concentration
of sodium chloride solutions from which the value of B

was determined. The following equation can be used to
calculate the volume of feed water at any given time.

Vt =
Ci × Vi

Ct
(3)

Where Ci is initial FS concentration, Vi is the initial volume
of FS, Ct is FS concentration at a certain time t and Vt is
the volume at the same time. At 25±2 °C, the viscosity
and density of the present draw solutions were determined
using an Ostwald viscometer and a density bottle [24].

Fig. 2. Conductivity versus different standard NaCl
concentrations.

3. Results and discussion

3.1. The performance of different types of draw solu-
tions

Fig. 3 shows the water flux (LMH) of the present proposed
draw solutions compared to water flux of 3.5% sodium
chloride solution which is considered as a reference inor-
ganic draw solution. It is obvious that the water flux of 1
M ascorbic acid is comparable with that of 3.5% sodium
chloride solution, whereas the water flux of 1 M thiourea
is about half that of 3.5% sodium chloride solution. The
present results can be attributed to the difference of chem-
ical structure of the suggested draw solution. Fig. 4 ex-
hibits the chemical structure of the different type of draw
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solutions. The structure of ascorbic acid contains many hy-
droxyl groups, resulting in a high osmotic pressure when
compared to other types of draw solutions. The water flux
and reverse solute flux of several types of draw solutions
are compared to current values in Table 2.

Fig. 3. Average water flux of various draw solutions (FS:
distilled water, T = 25 0C, conc: 1M ascorbic acid, 1M
sodium L-aspratate, 1M thiourea and 3.5% NaCl, FO

mode).

Fig. 4. The chemical structures of the present suggested
draw solutions [(a) L-ascorbic acid; (b) L- aspartic acid; (c)

Thiourea].

3.2. The influence of the concentration of the feed solu-
tion

At various initial feed concentrations, Fig. 5 depicts the
average water flux of 1 M L-ascorbic acid and 1 M sodium
L-aspartate. With increasing initial feed concentrations, the
average water flux falls. The net osmotic pressure pushing
force across the membrane diminishes as the initial feed
concentration increases, and the average water flux falls as
a result. It is obvious that water fluxes of ascorbic acid are
higher than water fluxes of sodium L-aspartate at the same
initial concentration.

The current trend can be described by explaining the
draw solute’s mass transfer resistance within the mem-
brane porous support layer. Previous researches [30–35]
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Fig. 5. Average water flux versus different feed solution
concentrations (T= 25 0C, draw solution conc. 1M ascorbic

acid, 1M sodium- aspartate, FO mode).

has used the K parameter to express the mass transfer re-
sistance within the porous layer, which is defined as:

K =
s
D

(4)

Where S stands for the membrane type-dependent struc-
tural parameter and D stands for the diffusion coefficient.
D improves water flux by lowering mass transfer resis-
tance. The measured viscosities of 1M L-ascorbic acid and
1M sodium-aspartate are 0.79 and 1.83 cP, respectively. As
the viscosity increases the diffusion coefficient decreases
at a constant temperature according to the Stokes-Einstein
equation [36–39]:

Dµ

T
= constant (5)

It can be concluded that the diffusion coefficient of
sodium L-aspartate is much lower than ascorbic acid which
results in a high mass transfer resistance and high impact
of internal concentration polarization and lower water flux.
The net driving osmotic pressure force diminishes as the
impact of ICP grows, and water flux decreases. The impact
of dilutive internal concentration polarization (ICP) on the
net driving osmotic pressure force is seen in Fig. 6.

3.3. The influence of draw solution concentration

The average water flux at various initial ascorbic acid draw
solution concentrations is shown in Fig. 7. The average
water flux decreases as the initial concentration of ascor-
bic acid rises, which is amazing. The presence of contact
forces between the ascorbic acid molecules may explain
why water flow decreases as draw solution concentration
rises. This interaction force has the potential to reduce
the osmotic pressure of the draw solution. Moreover, as
the initial concentration of the DS increases its viscosity

Fig. 6. The impact of dilutive ICP on the driving osmotic
pressure force in FO mode.

increases as well. That increase in viscosity results in a
decrease in ascorbic acid diffusivity. The lower the diffu-
sivity, the greater the impact of the ICP and the greater the
decrease in net osmotic pressure driving force. It has been
reported that [40] at low DS concentrations, the dilutive
internal concentration polarization (ICP) in FO mode was
relatively minor, however, its impact was significant at high
draw solution concentration and effective osmotic gradient
dropped significantly.

Fig. 7. Average water flux versus different initial draw
solution concentrations (T= 25 0C, feed solution: distilled

water, draw solution: ascorbic acid, FO mode).

3.4. The influence of membrane orientation

In both FO (active layer of the feed solution) and PRO
(active layer facing the draw solution) modes, membranes
were examined Fig. 8 shows a comparison between average
water flux against distilled water feed solution at different
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membrane orientations, namely FO and PRO. It is well
noted that the water flux obtained in FO mode is higher
than that obtained in PRO mode. The current trend contra-
dicts previous research [23–33]. The present behavior may
be attributed to the interaction between the ascorbic acid
molecules with the active polyamide membrane layer. That
interaction could interfere with water permeation across
the membrane and results in water flux reduction.

Fig. 8. Average water flux at different membrane
orientation mode (T= 25 0C, feed solution: distilled water,

draw solution: 1 M ascorbic acid).

4. Potential future applications

From the previous results and discussions, it can be con-
cluded that Ascorbic acid or Vitamin C is a viable draw
solution in FO desalination. The proposed draw solution is
highly water-soluble, has high osmotic pressure, and has
a large water flux with a low reverse solute flux. Vitamin
C is also one of the safest and most effective supplements
available to humans. Immune system inadequacies, cardio-
vascular illness, maternal health difficulties, eye disease,
and even skin wrinkling may be protected by vitamin C
[41]. The use of Vitamin C as a draw solution in the FO
process has the potential to treat the feed stream’s surface
or brackish seawater. The diluted draw solution in this case
is vitamin C enriched drinking water for long and healthy
life.

Given that the water flux of brackish water FO is a
strong function of its osmotic pressure, calculating the os-
motic pressure of all dissolved salts is necessary before we
can assess how well an actual brackish water feed solution
performs. The same water flux should result if the overall
osmotic pressure is similar to synthetic brackish water with,
for example, 4000 ppm NaCl, assuming that the brackish
water has no tendency to foul. Pretreatment or the appli-
cation of an antiscalant is necessary in such cases where

brackish water has a tendency to foul.

5. Conclusions

Different types of draw solutions were used in the FO pro-
cess in this study. The impact of operational conditions
on FO performance was looked into. Ascorbic acid, or vi-
tamin C, was shown to be a promising draw solution for
brackish water desalination. The intrinsic benefit of em-
ploying vitamin C as a draw solution is that it eliminates
the requirement for recuperation because the diluted draw
solution may be used as vitamin C enriched drinking water
right away. It has been discovered that as feed and draw
solution concentrations rise, water flux decreases. In ad-
dition, the FO mode has a larger water flux than the PRO
mode. Although further research is needed before vitamin
C can be used in the industry, this study has shown that
it can be used to desalinate brackish water using the FO
method.
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Nomenclature

Acronyms
λ The conductivity of the FS
A Active membrane area
B Constant
Ci Initial FS concentration
D Diffusion coefficient
K Solute resistance to diffusion in the support layer
S Structure parameter of the membrane
T Temperature
t Time
Vi Initial volume
Vt Volume at time
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