Nor Khuza Hidayu Ismail1, Shafreeza Sobri This email address is being protected from spambots. You need JavaScript enabled to view it.1, 2, and Nur Izzah Nabilah Haris2

1Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia


 

Received: December 5, 2021
Accepted: April 24, 2022
Publication Date: May 20, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202302_26(2).0013  


ABSTRACT


Cassava peel powder (CPP) was utilized as a green corrosion inhibitor to reduce the mild steel (MS) corrosion rate (Rc) in acidic media. The weight-loss method was employed to investigate the Rc and inhibition efficiency (IE) of the mild steel specimen in uninhibited and inhibited 1.0 M HCl solution with CPP dosages of 0.2, 0.4, 0.6, 0.8 and 1.0 g for a set amount of immersion times ranging from 24 to 120 hours. Results show that the inhibitive performance of CPP increased as the inhibitor dosages increased from 0.2 to 1.0 g but decreased with a rise in immersion time, inferring that longer immersion time is unfavorable. CPP dosage of 1.0 g attained the highest inhibition efficiency of 86.77% after 24 hours immersion time. Optimization study via Response Surface Methodology (RSM) demonstrates that the optimum conditions are estimated at 1.0 g CPP dosage and 57 hours immersion period, with an efficiency of 87.20%. The thermodynamic analysis revealed that the inhibition process is spontaneous and obeyed Langmuir isotherm, and the mechanism of inhibition inclined towards chemisorption.


Keywords: acid corrosion, mild steel, cassava peel powder, green corrosion inhibitor


REFERENCES


  1. [1] S. A. Umoren, M. M. Solomon, I. B. Obot, and R. K. Suleiman, (2019) “A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals" Journal of Industrial and Engineering Chemistry 76: 91–115. DOI: 10.1016/j.jiec.2019.03.057.
  2. [2] D. Kesavan, M. Gopiraman, and N. Sulochana, (2012) “Green inhibitors for corrosion of metals: a review" Chem. Sci. Rev. Lett 1(1): 1–8.
  3. [3] C. Verma, D. K. Verma, E. E. Ebenso, and M. A. Quraishi, (2018) “Sulfur and phosphorus heteroatomcontaining compounds as corrosion inhibitors: An overview" Heteroatom Chemistry 29(4): DOI: 10.1002/hc.21437.
  4. [4] S. Jayakumar, T. Nandakumar, M. Vadivel, C. Thinaharan, R. P. George, and J. Philip, (2020) “Corrosion inhibition of mild steel in 1MHCl using Tamarindus indica extract: electrochemical, surface and spectroscopic studies" Journal of Adhesion Science and Technology 34(7): 713–743. DOI: 10.1080/01694243.2019.1681156.
  5. [5] O. Sanni, A. Popoola, and O. Fayomi, (2018) “Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product" Results in Physics 9: 225–230. DOI: 10.1016/j.rinp.2018.02.001.
  6. [6] M. P. Asfia, M. Rezaei, and G. Bahlakeh, (2020) “Corrosion prevention of AISI 304 stainless steel in hydrochloric acid medium using garlic extract as a green corrosion inhibitor: Electrochemical and theoretical studies" Journal of Molecular Liquids 315: DOI: 10.1016/j.molliq.2020.113679.
  7. [7] A. Fouda, M. Hegazi, and A. El-Azaly, (2019) “Henna extract as green corrosion inhibitor for carbon steel in hydrochloric acid solution" International Journal of Electrochemical Science 14(5): 4668–4682. DOI: 10.20964/2019.05.47.
  8. [8] S. J. H. M. Jessima, S. Subhashini, and J. Arulraj, (2020) “Sunova spirulina Powder as an Effective Environmentally Friendly Corrosion Inhibitor for Mild Steel in Acid Medium" Journal of Bio- and Tribo-Corrosion 6(3): DOI: 10.1007/s40735-020-00370-x.
  9. [9] O. Sanni, O. Fayomi, and A. Popoola, (2021) “Environmentally-friendly Inhibitor From Waste for Aluminium Corrosion in 0.5 M Sulphuric Acid Environment":
  10. [10] A. Fidrusli, Suryanto, and M. Mahmood. “Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution”. In: 290. 1. Cited by: 17; All Open Access, Bronze Open Access. 2018. DOI: 10.1088/1757-899X/290/1/012087.
  11. [11] J. Lohitkarn, P. Hemwech, R. Chantiwas, and M. Jariyaboon, (2021) “The Role of Cassava Leaf Extract as Green Inhibitor for Controlling Corrosion and Scale Problems in Cooling Water Systems" Journal of Failure Analysis and Prevention 21(3): 847–860. DOI: 10.1007/s11668-021-01121-x.
  12. [12] H. Hassannejad and A. Nouri, (2018) “Sunflower seed hull extract as a novel green corrosion inhibitor for mild steel in HCl solution" Journal of Molecular Liquids 254: 377–382. DOI: 10.1016/j.molliq.2018.01.142.
  13. [13] N. Odewunmi, S. Umoren, and Z. Gasem, (2015) “Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution" Journal of Environmental Chemical Engineering 3(1): 286–296. DOI: 10.1016/j.jece.2014.10.014.
  14. [14] P. Mahalakshmi, S. Rajendran, G. Nandhini, S. Joycee, N. Vijaya, T. Umasankareswari, and N. Renuga Devi, (2020) “Inhibition of corrosion of mild steel in sea water by an aqueous extract of turmeric powder" International Journal of Corrosion and Scale Inhibition 9(2): 706–725. DOI: 10.17675/2305-6894-2020-9-2-20.
  15. [15] S. Sobri and N. Rahim, (2017) “Inhibitive effect of Cocon Nucifera L. (Coconut pulp) extract on mild steel acid corrosion" Jurnal Teknologi 79(5-3): 9–14. DOI: 10.11113/jt.v79.11320.
  16. [16] Food Crop Statistic, Department of Agriculture Malaysia. Website. http://www.doa.gov.my/.
  17. [17] O. O. Ezekiel, O. C. Aworh, J. C. du Preez, and L. Steyn, (2012) “Cultivation of Candida utilis on cassava peel hydrolysates for single-cell protein production" Journal of Food Science and Engineering 2(8): 452.
  18. [18] F. Sulaiman, M. Septiani, S. Aliyasih, and N. Huda, (2019) “Effectiveness of a cassava peel adsorbent on the absorption of copper (Cu2+) and zinc (Zn2+) metal ions" International Journal on Advanced Science, Engineering and Information Technology 9(4): 1296–1301. DOI: 10.18517/ijaseit.9.4.8990.
  19. [19] S. Mohd-Asharuddin, N. Othman, N. S. Mohd Zin, and H. A. Tajarudin. “A Chemical and Morphological Study of Cassava Peel: A PotentialWaste as Coagulant Aid”. In: 103. Cited by: 18; All Open Access, Gold Open Access, Green Open Access. 2017. DOI: 10.1051/matecconf/201710306012.
  20. [20] E. Ituen, O. Akaranta, and A. James, (2017) “Evaluation of performance of corrosion inhibitors using adsorption isotherm models: an overview" Chem. Sci. Int. J 18(1): 1–34.
  21. [21] N. Ayawei, S. S. Angaye, D. Wankasi, E. D. Dikio, et al., (2015) “Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of congo red in aqueous solution" Open Journal of Physical Chemistry 5(03): 56.
  22. [22] N. Ayawei, A. N. Ebelegi, and D. Wankasi, (2017) “Modelling and Interpretation of Adsorption Isotherms" Journal of Chemistry 2017: DOI: 10.1155/2017/3039817.
  23. [23] G. Bekiaris, C. Peltre, S. T. Barsberg, S. Bruun, K. M. Sørensen, S. B. Engelsen, J. Magid, M. Hansen, and L. S. Jensen, (2020) “Three different Fourier-transform mid-infrared sampling techniques to characterize bioorganic samples" Journal of Environmental Quality 49(5): 1310–1321. DOI: 10.1002/jeq2.20106.
  24. [24] J. Lamaming, R. Hashim, O. Sulaiman, C. P. Leh, T. Sugimoto, and N. A. Nordin, (2015) “Cellulose nanocrystals isolated from oil palm trunk" Carbohydrate Polymers 127: 202–208. DOI: 10.1016/j.carbpol.2015.03.043.
  25. [25] S. Idris, S. Rosnah, M. Nor, M. Mokhtar, and S. Abdul Gani, (2020) “Physicochemical composition of different parts of cassava (Manihot esculenta crantz) plant" Food Research 4: 78–84. DOI: 10.26656/fr.2017.4(S1).S33.
  26. [26] A. Fidrusli, Suryanto, and M. Mahmood. “Ginger extract as green corrosion inhibitor of mild steel in hydrochloric acid solution”. In: 290. 1. Cited by: 17; All Open Access, Bronze Open Access. 2018. DOI: 10.1088/1757-899X/290/1/012087.
  27. [27] X. Li, S. Deng, T. Lin, X. Xie, and G. Du, (2018) “Cassava starch-sodium allylsulfonate-acryl amide graft copolymer as an effective inhibitor of aluminum corrosion in HCl solution" Journal of the Taiwan Institute of Chemical Engineers 86: 252–269. DOI: 10.1016/j.jtice.2018.03.002.
  28. [28] R. T. Loto, C. A. Loto, O. Joseph, and G. Olanrewaju, (2016) “Adsorption and corrosion inhibition properties of thiocarbanilide on the electrochemical behavior of high carbon steel in dilute acid solutions" Results in Physics 6: 305–314. DOI: 10.1016/j.rinp.2016.05.013.
  29. [29] T. Kawauchi, T. Kojima, H. Sakaguchi, and T. Iyoda, (2018) “Electrostatic Repulsion-Induced Desorption of Dendritic Viologen-Arranged Molecules Anchored on a Gold Surface through a Gold-Thiolate Bond Leading to a Tunable Molecular Template" Langmuir 34(22): 6420–6427. DOI: 10.1021/acs.langmuir.8b00858.
  30. [30] P. Kumari and M. Lavanya, (2021) “Optimization of Inhibition Efficiency of a Schiff Base on Mild Steel in Acid Medium: Electrochemical and RSM Approach" Journal of Bio- and Tribo-Corrosion 7(3): DOI: 10.1007/s40735-021-00542-3.
  31. [31] S. Greenland, S. J. Senn, K. J. Rothman, J. B. Carlin, C. Poole, S. N. Goodman, and D. G. Altman, (2016) “Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations" European Journal of Epidemiology 31(4): 337–350. DOI: 10.1007/s10654-016-0149-3.
  32. [32] N. Hassan, S. M. Ali, A. Ebrahim, and H. El-Adwy, (2019) “Performance evaluation and optimization of Camellia sinensis extract as green corrosion inhibitor for mild steel in acidic medium" Materials Research Express 6(8): DOI: 10.1088/2053-1591/ab2376.
  33. [33] M. Benarioua, A. Mihi, N. Bouzeghaia, and M. Naoun, (2019) “Mild steel corrosion inhibition by Parsley (Petroselium Sativum) extract in acidic media" Egyptian Journal of Petroleum 28(2): 155–159. DOI: 10.1016/j.ejpe.2019.01.001.
  34. [34] B. Hafez, M. Mokhtar, H. Elmsellem, and H. Steli, (2019) “Environmentally friendly inhibitor of the corrosion of mild steel: Commercial oil of eucalyptus" International Journal of Corrosion and Scale Inhibition 8(3): 573–585. DOI: 10.17675/2305-6894-2019-8-3-8.
  35. [35] J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. Sing. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications: Second Edition. Cited by: 521. 2013, 1–626. DOI: 10.1016/C2010-0-66232-8.
  36. [36] H. K. Boparai, M. Joseph, and D. M. O’Carroll, (2011) “Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles" Journal of Hazardous Materials 186(1): 458–465. DOI: 10.1016/j.jhazmat.2010.11.029.
  37. [37] M. Ali Asaad, N. N. Sarbini, A. Sulaiman, M. Ismail, G. F. Huseien, Z. Abdul Majid, and P. Bothi Raja, (2018) “Improved corrosion resistance of mild steel against acid activation: Impact of novel Elaeis guineensis and silver nanoparticles" Journal of Industrial and Engineering Chemistry 63: 139–148. DOI: 10.1016/j.jiec.2018.02.010.