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Biomass solid waste (BSW) generation in Malaysia is rapidly increasing as a result of nation’s industrializa-
tion, urbanization, and population growth. Thermochemical conversion of BSW to produce energy is not
straightforward due to fuel’s high moisture content, low heating value, and poor grindability. Accessing
different combinatorial scheme of BSW may help to mitigate above-mentioned issues while maintaining at-
tractively high energy outputs. In this work, calorific values and ultimate analyses of a wide variety of BSW
reported in literature were compiled. Based on the collected data, two empirical correlations to predict high
heating value (HHV) of BSW were developed using a multiple regression method. The developed correla-
tions were (i) HHV = 908.37C + 2942.94H + 4439.73S + 518.92O − 63558.52(municipal solid waste) and (ii)
HHV = 382.62C − 368.16H + 2788.24S − 37.83O + 926.26(biomass/biochar) where, C, H, O, N, and S repre-
sent biomass content in a form of elemental carbon, hydrogen, oxygen, nitrogen, and sulfur, respectively.
The accuracies of the correlations were verified by comparing the predicted values with those experimentally
determined. Thermogravimetric analysis was used to analyze BSW combustion behavior and retrieve important
combustion parameters. The best-fit correlations obtained in this work had R2 values of 0.98 (MAPE of 3.2%)
and 0.92 (MAPE of 7.1%) for municipal solid waste and biomass/biochar samples, respectively. Moreover, the
correlations were fairly accurate in predicting HHV of different BSW combination with prediction error of less
than 15%. The correlations developed in this work could be instrumental for a precise determination of different
combination of solid biomass.
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1. Introduction

Rapid increase in greenhouse gas emissions (e.g., CO2)
from combustion of non-renewable fossil fuels and fu-
ture demands for sustainable energies have encouraged
researchers and policy makers to look for renewable en-
ergy sources and develop advanced energy conversion

technologies. Shifting to renewable energies help to ensure
energy availability, diversify energy portfolios, and abate
climate change issues. Promoting renewable energies re-
sults in green development. At the same time, it provides
numerous benefits to communities such as increased food
production, reduced environmental risks, and improved
social, financial, and economic well-being [1]. Malaysia has
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pledged to use biomass as a fuel source in thermal power
plant in order to achieve 50% green energy in the energy
mix by 2050.

Biomass solid waste (BSW) is gaining popularity as a
renewable resource due to its abundance in nature, rapid
renewability, net below zero CO2 emission, and low cost
[2, 3]. Among the potential biomass conversion technolo-
gies (emerging and mature) to be considered to process
BSW resource include combustion, gasification, pyroly-
sis, alcoholic fermentation, supercritical fluid processing,
anaerobic digestion, and photosynthetic microbial fuel cells
[4]. Biomass has a potential to be used as a fuel source
in power plants to generate energy through combustion
process. Biomass is considered as a “carbon-neutral” re-
source because it sequesters CO2 during its growth, which
compensates for the CO2 released when combusted [3].
Pollution in the form of acid rain and other pollutants can
be reduced because biomass emits less sulfur dioxide and
nitrogen oxide to the atmosphere.

Despite inexpensive and abundant, BSW however has
its limitations as a direct feedstock for energy production.
BSW possesses high moisture content, low bulk density,
poor heating value, and biodegradability; likely will result
in poor combustion efficiencies and low energy outputs [5].
During combustion process, elemental chlorines present
in the BSW can form corrosive hydrogen chloride that can
damage boiler unit in thermal power plants [6]. Utilizing a
single type of biomass for energy production is desirable
as it provides a relatively stable energy output without
a significant variation in the composition of the flue gas
to be treated downstream. However, obtaining a single
type of BSW source might be challenging from sourcing
and sorting point of view. Researchers might be able to
go around the above-mentioned challenges by combining
two or more type of biomass in their fuel mix. Mixed-
biomass approach allow for a higher degree of freedom in
the selection of biomass as solid fuels.

One important metric to consider when evaluating po-
tential of biomass as fuel source for energy production is
biomass calorific values. Calorific value of a solid fuel can
be expressed as a low heating value (LHV) or a high heat-
ing value (HHV). LHV refers to the amount of heat released
by a fuel source during combustion process with water in
its gaseous state as a product while HHV is based on wa-
ter in its liquid state [7, 8]. Calorific values of BSW can be
measured experimentally with a bomb calorimeter or math-
ematically predicted based on physicochemical properties
of the materials [7–9]. It is worth to mention that a precise
determination of calorific values of biomass through exper-
imental approaches is complicated, time-consuming, and

labor intensive. There are many proposed models to predict
heating values of solid fuels based on the fuels’ chemical
analysis, proximate analysis, and ultimate analysis. Among
the popular model is Dulong’s model which is originally
developed to predict the heating value for coal samples.
Tillman back in 1978 developed two new equations to esti-
mate calorific values of biomass from its final analysis and
found that the biomass calorific values strongly depend on
the biomass carbon contents [9]. Models to predict calorific
values of a wide range of biomass have been proposed by
Yin [9], Huang et al. [10], and Callejón-Ferre et al. [11].

We should highlight here that prior works mostly focus
on calorific value evaluation of a particular type of biomass.
Therefore, the developed correlations might be accurate to
a narrow range of biomass samples only. The correlations
accuracies might be uncertain when considering different
class of solid fuels, for example, municipal solid waste
(MSW) or different combinations of biomass. In addition,
there is still lack of studies on combustion performances
and precise determination of calorific values for different
combinations of BSW. Large-scale energy production utiliz-
ing only one type of BSW requires unnecessary steps (i.e.,
materials sorting). Therefore, coming up with a model to
precisely predict calorific values of different mix of BSW
is instrumental in this area. Since experimental determi-
nation of calorific value are tedious work, one may opt
for mathematical approach. Mathematical models can be
produced with ease at a faster rate and lower cost [7, 8].
Hence, this approach has been adopted by Akkaya and
coworkers [12, 13] for a precise determination of calorific
values of different coal samples.

Herein, we report two models to predict calorific values
of different BSW and their combinations using a mathe-
matical approach. The accuracies of the predictive mod-
els are then compared to established models (i.e., Dulong
and Steur). For validation, the calorific values predicted
by the models were compared with those experimentally
determined using bomb calorimeter. Thermogravimetric
analysis was used to monitor the fuel’s burning profile
and retrieve combustion parameters [14]. Coats Redfern
method was selected to evaluate BSW combustion kinetics
and combustion reactivities.

2. Experimental

2.1. Development of calorific value models based on ulti-
mate analysis

Development of empirical correlations to predict calorific
values of different BSW samples involves an extensive liter-
ature survey and data collection from previously reported
works [15–22]. Ultimate analyses and calorific values of
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32 different samples were compiled and analyzed in the
Microsoft Excel: (1) MSW – wood, tires, paper, rubber,
yard waste, textile, etc. (2) biomass – sawdust, coconut
fiber, palm kernel shell, etc. (3) biochar – rice husk, corn
straw, wine pine, oil palm trunk, etc. Two new correla-
tions were developed using linear regression approach.
Percentage error (Eq. (1)) values were used as indicators to
measure deviation between the predicted and experimental
calorific values. In Equation 3 below, CVpred is predicted
calorific value (kJ.kg−1) and CVmeas is measured calorific
value (kJ.kg−1).

Percentage error =
CVpred − CVmeas

CVmeas
× 100% (1)

The developed correlations were then compared with
established correlations (i.e., Dulong and Steur) to deter-
mine which correlations are more precise in predicting
biomass heating values. If prediction error is close to zero,
the correlation is indicated as the best regression line [23,
24]. To select a statistically suitable calorific value corre-
lation for BSW samples, mean absolute percentage error
(MAPE) values are used as indicators (Eq. (2)). MAPE is a
simple measure of how close the predicted calorific value is
to experimental data, with lower MAPE values imply bet-
ter correlation accuracy. In the equation below, HHVpred
and HHVexp are predicted and experimental high heating
value in kJ/kg.

MAPE =
1
n

n

∑
n=1

(HHVpred − HHVexp

HHVexp

)
× 100 (2)

2.2. Experimental evaluation of biomass calorific values
and burning profiles

Calorific values of BSW samples were experimentally de-
termined using an oxygen bomb calorimeter (PARR-1314)
performed in accordance with the ASTM D5865-13 stan-
dard. The tests were conducted in an air environment
and lasted for approximately 10 min at 35 psi (∼2.38 atm).
Measurements were repeated for each sample and aver-
age results were recorded. For bomb calorimeter tests, 1.0
grams of samples (measured using analytical balance) were
used. Five locally procured BSW samples were shredded
into a smaller size prior to testing. To experimentally de-
termine calorific values of BSW mix, five combinations of
solid samples with 1:1 ratio by weight were used.

Three BSW combinations were randomly selected to
for thermogravimetric analysis (TGA). The samples chosen
were multiple plastic/biochar, used tires/biochar, and used
tires/textiles. Thermal analyses of different combination
of BSW samples were performed using a Mettler Toledo

TGA/DSA 3+. A solid sample was filled in a crucible
and heated under a continuous flow of air (100 ml.min−1)
from room temperature to 900 °C with a ramp rate of 20
°C.min−1. Sample weight loss (TG curve) and differential
weight loss (DTG curve) as a function of time or tempera-
ture were recorded.

2.3. Quantification of biomass solid waste combustion
parameters

BSW combustion performances can be assessed from the
TGA curve. Key combustion characteristics such as igni-
tion temperature, burnout temperature, and combustion
index can be calculated from the TGA profiles. Ignition
temperature, (Ti) is determined by locating the temperature
at which the sample began to burn. Meanwhile, burnout
temperature, (Tb) is a temperature at which the burning
rate reached 1%.min−1 at the end of DTG curve. Alter-
natively, Tb can also be taken at temperature where con-
version reaches 99% [25]. Both Tb and Ti have a similar
unit of degree Celsius (°C). Combustion index (S) is calcu-
lated from Eqs. (3) and (4) where DTGmax is the maximum
combustion rate, DTGmean is the average conversion rate
between Ti and Tb, β is the heating rate, αTb are fractions
of material degraded at Tb, and αTi are fractions of material
degraded at Ti [26, 27]:

S =
DTGmax × DTGmean

T2
i × Tb

(3)

d m
dt

mean =
αTb − αTi

(Tb − Ti) /β
(4)

Based on these key parameters, a few comments can be
made. A solid fuel with high Ti usually indicates a fuel
source with a high thermal stability. A high Tb value indi-
cates a fuel that is difficult to burn, necessitating a longer
retention time and high heat flow for a full conversion.
Lastly, high combustion index values indicate good com-
bustion performances.

2.4. Evaluation of biomass solid waste combustion kinet-
ics

To model mass loss with the Arrhenius’s law, the conver-
sion degree (α) is represented by Eq. (5). Rate of heteroge-
neous solid-state reactions on the other hand is calculated
from Eq. (6).

α =
mo − mt
mo − m f

(5)

dα

d T
=

1
β

k(T)f(α) =
C
β

exp
(
−EA

RT
f(α)

)
(6)

where β = dT
dt .
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For Eq. (5), mo, mt, and mf are initial mass of sample
(g), mass of sample at time t (g), and final mass of sample
(g), respectively. Meanwhile for Eq. (6), symbols/variables
k, T, R, C, EA and α are temperature dependent reaction
constant (s−1), absolute temperature (K), universal gas con-
stant (J·mol−1·K−1), pre-exponential factor (min−1), acti-
vation energy (kJ·mol−1), and conversion degree, respec-
tively.

Combustion kinetic parameters are calculated using the
Coats Redfern method. The Coats Redfern model is a
model-free method used to calculate activation energy (EA)
and pre-exponential parameters by varying the reaction
order (n). Simplified Coats Redfern model are shown in
Eqs. (7) and (8). Linearized form of Coats Redferns model
was obtained through simple mathematical manipulation
(Eqs. (9) and (10)).

ln

(
1 − (1 − α)1−n)

T2(1 − n)
= ln

CR
σEA

− EA
RT

( for n ̸= 1) (7)

ln
(1 − (1 − α))

T2 = ln
CR
σEA

− EA

RT2 ( for n = 1) (8)

y − axis = ln
1 − (1 − α)1−n

T2(1 − n)
, x − axis =

1
T
( for n ̸= 1)

(9)

y − axis = ln
1 − (1 − α)

T2 , x − axis =
1
T
( for n = 1)

(10)
where n, T, σ, R, C, and EA are reaction order, absolute
temperature (K), heating rate (K·min−1), universal gas con-
stant (J·mol−1·K−1), pre-exponential factor (min−1), and
activation energy (kJ·mol−1), respectively. Alpha (α) on the
other hand is conversion degree (see Eq. (5)). Activation en-
ergy and pre-exponential factor can be calculated from the
slope and y-intercept of the kinetic plot of Eqs. (9) and (10)
(linear plot). Trial-and-error method is used to determine
the order of reaction in Coats Redfern technique. Note that,
the reaction order can be any real number (e.g., n = 0.1, 0.5,
1, 1.5, 2, 3, 5, 10, and so on) and usually determined from
the best-fit response. In this work, we began with a small n
value and if necessary, increase the value if model failed to
give best response (e.g., low R2 value or negative activation
energy).

3. Result and discussions

3.1. Data collection and model development using multi-
ple regression approach

A number of models to predict calorific values of solid fuels
have been proposed and the models are either based on

chemical analysis [7, 28], proximate analysis [7, 24, 29, 30],
or ultimate analysis [7, 10, 24, 29–31]. Sheng and Azevedo
[7] argued that among these three types of models, the most
reliable and adequate prediction approach are based on the
final analysis. Qian et al. [15] claimed that the equations de-
rived to calculate HHV of biochar from the final study are
fairly accurate. HHV prediction accuracies from proximate-
based models are moderate because they could only pro-
vide an empirical biomass composition. The accuracies of
chemical-based models can be quite poor attributable to
variation of component characteristics [31]. Our attempt
in this work is to come up with a more accurate, reliable,
and holistic model to accurately predict calorific values of
a wide range BSW and their combinations based on feed-
stocks’ final analysis. In this study, analytical data range
used to predict BSW calorific values are:

• Carbon, C (41.6% - 91.6%)

• Hydrogen, H (0.70% - H - 9.70%)

• Oxygen, O (1.00% - 46.5%)

• Nitrogen, N (0.00% - 5.25%)

• Sulfur, S (0.00% - 5.60%)

Calorific values and elemental compositions of 32
biomass feedstocks are gathered through extensive litera-
ture reviews [15–22]. These feedstocks are classified into
three types: (1) municipal solid waste (MSW), (2) biomass
and (3) biochar. One interesting trend to note from the
collected data is the volatile matter and fixed carbon goes
hand in hand with the calorific values. High volatile mat-
ter and fixed carbon content make the solid fuels reactive
and easy to be ignited at low temperature resulting in high
calorific values. Regardless of feedstocks, higher carbon
and hydrogen contents generally imply higher calorific
value fuels. An opposite trend of biomass calorific values
is observed for solid fuels with high moisture and ash con-
tent [32]. Feedstock with high moisture content (50 – 99%)
results in lower combustion temperature (418 – 426 °C) and
can significantly impact combustion behavior of the system
[33]. A relatively accurate correlation is obtained when
coefficient of determination (R2) value is close to 1. Us-
ing multiple regression methods, two correlations, namely
Correlation A for municipal solid waste sample and Cor-
relation D for biomass and biochar were developed (see
Table 1).

Calorific value predictions from the developed models
(i.e., Correlation A and D) were compared with calorific
values of different solid fuel samples reported in literature
(experimentally determined and/or predicted). Accuracies
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Fig. 1. Regression plot and comparison between predicted and literature calorific values for the regression, Dulong, and
Steur correlations based on ultimate analysis for (a – b) MSW sample composition and (c – d) biomass/biochar sample

composition.

of the models were also compared with established models
such as Dulong and Steur. Performance criteria to select the
most optimal models are R2 coefficient and mean absolute
percentage error (MAPE). The R2 coefficient and MAPE
values are widely used in statistical analyses to quantify
correlation’ accuracies where high accuracy correlations
will have low MAPE values and R2 coefficients closer to 1.

As shown in Fig. 1, the developed models able to predict
calorific values of BSW closer to the mainline. The models
(i.e., Correlation A and D) in Table 1 have high R2 coeffi-
cients of 0.98 and 0.92 and lower MAPE values of 3.2% and
7.10% for MSW and biomass/biochar samples, respectively
(see also Fig. 1(a) and Fig. 1(c)). For MSW samples, Dulong
correlation (Correlation B) and Steur correlation (Correla-
tion C) have high MAPE of 14.5% and 20.1%, respectively.
Meanwhile, the MAPE of Dulong (Correlation E) and Steur
(Correlation F) for biomass/biochar samples are 9.90% and
9.88%, respectively. The equations derived in prior stud-
ies (i.e., Dulong and Steur equations) perform poorly as
the equations are originally intended specifically for coal
samples. In this work, the majority of the samples tested
are bio-based where large variations in samples’ physico-

chemical properties are to be expected. When compared
to coal, biomass usually have lower carbon contents (42 –
54%), higher oxygen contents (35 – 45%), and lower heating
values (14 – 21 MJ·kg−1) [29].

3.2. Model validation for solid fuel mixture (comparison
with literature data)

Model abilities to accurately predict heating values of dif-
ferent combinatorial scheme of BSW can be assessed from
their calculated percentage error. A positive error value
indicates an overestimation, while a negative error value
indicates underestimation of the calorific value predictions.
Models with small percentage error are desirable as the
predictions are more accurate. The model (i.e., Correlation
A and D) abilities to accurately predict calorific values of
different BSW combinations are assessed by comparing the
calculated calorific values with those reported in literature.
Generally speaking, individual or combination of solid fu-
els with calorific values of 25 MJ·kg−1 is considered as high
calorific value fuel sources. For a comparison coal has a
calorific value ranging from 23 to 28 MJ·kg−1 [33].

Five solid fuel combinations from MSW, biomass,
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Table 1. Correlations for predicting the calorific value of MSW, biomass, and biochar.

Formula* R2 MAPE (%) Ref.
HHVpred = 908.37C + 2942.94H + 4439.73 S+ 518.92O − 63558.52 (Correlation A) 0.98 3.20 THis work
HHVpred = (80.5C + 338.6H − 42.3O + 22.22 S+ 5.55 N)× 4.186 (Correlation B) 0.65 14.5 [34]
HHVpred = (81C + 342.5(H − O/8) + 22.5 S − 6(9H+ MC) )× 4.186 (Correlation C) 0.71 20.3 [35]
HHVpred = 382.62C − 368.16H + 2788.24 S − 37.83O +926.26 (Correlation D) 0.92 7.10 This work
HHVpred = (80.5C + 338.6H − 42.3O + 22.22 S+ 5.55 N)× 4.186 (Correlation E) 0.83 9.90 [34]
HHVpred = (81C + 342.5(H − O/8) + 22.5 S − 6(9H + MC))× 4.186 (Correlation F) 0.85 9.80 [35]
*HHVpred is predicted high heating value in kJ/kg. C, H, O, N, and S represent biomass content in a form of elemental
carbon, hydrogen, oxygen, nitrogen, and sulfur, respectively

biochar, and coal categories depicted in Fig. 2(a – b) are
used as samples. For MSW category, plastic film, styrofoam,
used tires, rigid plastic, rubber, and carpet samples are se-
lected. Meanwhile, for biomass/biochar category, oil palm
trunk (OPT) 500, palm kernel shell, coconut fiber, sawdust,
and MSW (including food) are selected. It is postulated
that the proposed combination will have an attractively
high specific energy outputs as opposed to the individual
solid fuels. In Fig. 2(a – b), predicted value is defined as
effective heating value of solid fuel mixture (1:1 ratio by
weight) calculated using the models. On the other hand,
literature value is defined as average heating values of two
solid fuels mix reported by researchers.

Fig. 2(a) investigate the potential of converting multiple
plastic and used tires into solid fuels for energy produc-
tion. Previous research found that used tires have high
calorific values between 29 – 39 MJ·kg−1. In addition,
used tires are made up of roughly 90% organic compo-
nents which make them an excellent type of fuel source
[36]. Plastics’ calorific values can exceed 40 MJ·kg−1 due
to their high carbon and hydrogen content with low ash
content. Fig. 2(a – b) suggest that the two correlations
proposed in this work (i.e., Correlation A and B) perform
reasonably well for BSW mixture due to small differences
between the predicted values and literature values (average
of two individual heating values previously reported by
researchers). For MSW, the majority of the data are within
5% error. On the other hand, most of the predicted values
for biomass/biochar in Fig. 2(b) are found to be within a
7% margin of error. The percentage error for MSW (food
waste included) and biochar (OPT500) mixture however is
relatively high (16.90%). As a result, the correlation is lim-
ited to biomass/biochar only and does not apply to MSW,
which includes food waste. Co-firing biomass/biochar
with coal produces relatively high energy outputs, hence a
good option to consider for energy production as shown in
Fig. 2(b).

3.3. Model validation for solid fuel mixture (comparison
with experimental data)

Fig. 3(a – b) shows comparison between experimental
calorific values and models’ predictions. Solid fuel com-
binations consisting of two individual BSW 1:1 ratio by
weight were determined using bomb calorimeter. The mod-
els can predict calorific values of the BSW with reasonable
accuracies where most of the data are within ±10% error
for MSW except for multiple plastic/textile combination,
which is 15.5% error. Meanwhile, the percentage error for
biomass/biochar combinations is similar to MSW except
for biochar (OPT500)/coal samples with MAPE of 15.04%.

This study showed that combining different biomass
solid waste is a good approach to consider as the resulting
mixture would have higher effective heating values. Shi et
al. [18] demonstrated that combination of textile and used
tires yield an effective calorific value of 30.5 MJ·kg−1, 47%
higher when compared to burning textile only. Calorific
value of palm kernel shell according to Carmo-Calado et
al. [17] is 18.8 MJ·kg−1. A 1.5 MJ·kg−1 increase in energy
output can be obtained by co-firing palm kernel shell with
coal. Energy generation efficiency of biomass solid waste
co-firing can be relatively high, reaching up to 45% when
compared to pure biomass, which is usually less than 30%
[37].

3.4. Biomass solid waste combustion behaviors

Fig. 4 shows TG and DTG profiles obtained at a heat-
ing rate of 20 oC·min–1 for three BSW combinations: (1)
multiple plastic/biochar, (2) used tires/biochar, and (3)
used tires/textiles. Thermal behaviors of the samples vary
greatly as shown in Fig. 4 (a – c). According to a popular
belief, there are three major stages in the combustion pro-
cess. On the DTG curve, the first region (Stage 1) represents
dehydration and water removal process. The second stage
is caused by the oxidation and removal of volatile matter
in the solid samples (Stage 2). The third region (Stage 3)
is produced as a result of the oxidation of the char that
remains after removal of the volatiles from the samples
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Fig. 2. Summary of the optimized combination sample data used to validate (a) Correlation A for MSW and (b) Correlation
D for biomass/biochar mixture.

Fig. 3. Summary of the comparison between experimental calorific value and predicted calorific value for five sample
combinations of (a) MSW and (b) biomass/biochar combinations.

[38].

The first stage of combustion for multiple plas-
tic/biochar, used tires/biochar, and used tires/textile com-
binations occur at temperatures ranging from 39 °C – 150
°C, 38 °C – 137 °C, and 45 °C – 142 °C, respectively, at-
tributable to sample dehydration. At intermediate stage,
volatile and fixed carbon which constitute the main struc-
ture of the multiple plastic/biochar, used tires/biochar,
and used tires/textile combinations begin to burn. Used
tires/biochar combination have a high ignition tempera-
ture due to mixture high thermal stability. As the tempera-
ture rises, decomposition rate of the sample increases. The
graphs in Fig. 4 show that the samples’ mass losses are
steadily decreasing, indicating gradual decomposition of
organic and volatile materials. At this stage, total mass loss
of used tires/biochar mixture is 24.5% while total mass loss
of used tires/textile is 43%. The third stage of mass loss
of used tires/biochar and used tires/textile combination

begin at 393 °C – 590 °C (with mass losses 65%) and 331 °C –
475 °C (with mass losses 60%), respectively, corresponding
to residual char burning process. Beyond final tempera-
ture, the variability in the sample mass is undetectable.
The phase of mineral decomposition in the air, according
to Chen et al. [39] is not visible on the graph.

Important combustion parameter of BSW samples such
as ignition temperature (Ti), burnout temperature (Tb), and
combustion index (S) can be extracted directly or indirectly
from the TG-DTG curve. In this work, Ti is determined
using the intersection method, while Tb is identified using
conversion method (temperature where sample conversion
reaches 99%) [40]. Combustion parameters of the three
sample combinations are shown in Table 2. The combina-
tion of used tires/textiles mixture has the lowest Ti of 321
°C while used tires/biochar combination have the high-
est Ti of 381 °C. It is worth mentioning that Ti of used
tires/biocar recorded in this study is within a similar tem-
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Fig. 4. Comparison of the TG-DTG curves of (a) multiple plastics/biochar (b) used tires/biochar (c) used tires/textile
sample combinations.

perature range for used tires/coal combinations reported
by Li et al. [41]. Ti is an important index for indicating
the combustion property of a BSW mixture where lower
Ti indicates better combustion property. Ti is determined
by the early releases of volatiles and a rate at which heat is
released by volatiles combustion. Vamvuka and Sfakiotakis
[26] found that higher oxygen content in the fuel result in
faster thermal devolatilization and oxidation. On the other
hand, moisture content of the fuel slightly increases igni-
tion and burnout temperatures. Based on collected data,
biochar has a higher moisture content, resulting in a higher
Ti.

Burnout temperatures of the sample combinations are
arranged in the following order: used tires/textile < mul-
tiple plastic/biochar < used tires/biochar. In addition
to Ti and Tb values, combustion index (S) can also be
used to represent samples combustion reactivities (Table 2)
where a higher S value indicates better ignitability. S
values of BSW samples are ranked in the following or-
der: used tires/biochar < multiple plastic/biochar < used
tires/textile, which agrees well with the Ti results. In terms
of combustion parameters, the combination of BSW is a re-
active fuel, which could be a viable alternative for replacing

Table 2. Combustion parameters for different
combinations of BSW at 20 °C ·min˘1.

Sample Ti (°C) Tb (°C) S
Multiple plastic/biochar 371 521 3.11 × 10−12

Used tires/biochar 381 581 8.33 × 10−13

Used tires/textile 321 468 8.12 × 10−11

non-renewable energy sources with renewable and clean
energy.

3.5. Analysis of combustion kinetic parameters

The corresponding kinetic parameters of three combination
of BSW samples are shown in Table 3. Generally speaking,
combustion process of the sample mixtures can be divided
into three stages as described in the preceding section. Us-
ing the Coats Redfern method, the activation energy of
multiple plastic/biochar combination ranges from 34.93
kJ·mol−1 – 170.5 kJ·mol−1. Used tires/biochar combination
has activation energy in the range of 37.57 kJ·mol−1 – 239.0
kJ·mol−1. Lastly, used tires/textile combination has activa-
tion energy in the range of 7.71 kJ·mol−1 – 61.30 kJ·mol−1.
It is a well-known that material with low activation energy
is more reactive, hence easier to be combusted. Since used
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Table 3. Combustion kinetic parameter of the combination of biomass solid waste.

Sample Combustion stage Reaction order, n EA (kJ·mol−1) C (min−1) R2 value
Multiple plastic/biochar I 2 41.57 2.75 × 104 0.929

II 2 34.93 2.15 × 101 0.923
III 2 170.5 7.58 × 1011 0.927

Used tires/biochar I 2 43.70 5.545 × 104 0.948
II 2 37.57 5.285 × 101 0.925
III 2 239.0 1.00 × 1016 0.952

Used tires/textile I 2 7.710 1.09 × 10−1 0.979
II 2 61.31 3.63 × 104 0.946
III 2 24.93 8.06 × 102 0.955

tires/textile combination has lower activation energy, it is
therefore more flammable. From Table 3, activation energy
for multiple plastic/biochar and used tires/biochar combi-
nation in the second stage is lower than that of other stages,
reflecting the diffusion-based volatile release phase [14].
Residual carbon after the second stage is more difficult to
burn and requires more energy to pass through the process.
It is therefore not surprising that the third stage has the
highest activation energy among others.

4. Conclusions

In this work, two predictive models of calorific values for
biomass solid waste were developed through extensive lit-
erature survey followed by regression method. The models
were accurate in predicting specific energy outputs of a
wide variety of solid fuels with R2 coefficients of 0.98 and
0.92 for municipal solid waste and biomass/biochar, respec-
tively. The models also have low MAPE values of only 3.2%
for municipal solid was and 7.10% for biomass/biochar
outperforming other commonly reported correlations (i.e.,
Dulong and Steur). The predicted calorific values of the
biomass solid waste combinations were validated by com-
paring them with experimentally determined calorific val-
ues. The model predictions agree well with the experi-
mental results within a MAPE of less than 15%, indicating
excellent prediction accuracies and general applicability of
the models. Important key combustion parameters of the
biomass solid waste combinations such as ignition temper-
ature, burnout temperature, and maximum peak temper-
ature were retrieved from gravimetric analysis, and then
correlated with combustibility indices. The two models de-
veloped in this work could be important to predict calorific
values of a wide variety of solid fuels and their combina-
tion with high degree of accuracy. Moving forward, we
recommend adopting a more sophisticated analysis tools
such as machine learning and data mining to ensure model
robustness when transitioning to a more complex biomass
mixture.
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