Syifa Luthfiyah1, Bambang Soegijono This email address is being protected from spambots. You need JavaScript enabled to view it.1, Ferry Budhi Susetyo2, and Hamdan Akbar Notonegoro3

1Department of Physics, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok 16424, Indonesia
2Department of Mechanical Engineering, Universitas Negeri Jakarta, Jakarta 13220, Indonesia
3Department of Mechanical Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon 42435, Indonesia


 

Received: November 13, 2021
Accepted: January 19, 2022
Publication Date: February 27, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202212_25(6).0015  


ABSTRACT


Some waste materials from natural sources are interesting resources for extraction to a more valuable compound. Specific techniques for the extraction of these waste materials are required. Hydroxyapatite (HAp) is one of the most important biomaterials that can be extracted from natural Bovine Bone waste. Natural Hydroxyapatite has been extracted from bovine bone by heating it at different temperatures, namely 850°C and 900°C. The properties of this natural hydroxyapatite have been compared with synthetic hydroxyapatite obtained from a commercial product. The influence of the HAp extraction method on several critical properties such as Ca/P ratio, crystal structure, crystallinity, crystallite sizes, microstrain, and morphology have been discussed. The hydroxyapatite obtained from the bovine bone was around 51% wt. The volume of the unit cell, crystallinity, crystallite size, ratio Ca/P, and morphology were affected by the extraction process. The conclusion is that HAp obtained from bovine bone is comparable to commercial products.


Keywords: Hydroxyapatite, Ca/P, Bovine bone


REFERENCES


  1. [1] D. Gomes, A. Santos, G. Neves, and R. Menezes, (2019) “A brief review on hydroxyapatite production and use in biomedicine" Cerâmica 65: 282–302. DOI: 10.1590/0366-69132019653742706.
  2. [2] S. V. Dorozhkin, (2009) “Calcium orthophosphates in nature, biology and medicine" Materials 2(2): 399–498. DOI: 10.3390/ma2020399.
  3. [3] J. Mehta, V. K. Mittal, P. Gupta, et al., (2017) “Role of thermal spray coatings on wear, erosion and corrosion behavior: a review" Journal of Applied Science and Engineering 20(4): 445–452. DOI: 10.6180/jase.2017.20.4.05.
  4. [4] G. P. Jayaswal, S. Dange, and A. Khalikar, (2010) “Bioceramic in dental implants: A review" The Journal of Indian Prosthodontic Society 10(1): 8–12. DOI: 10.1007/s13191-010-0002-4.
  5. [5] L. C. Palmer, C. J. Newcomb, S. R. Kaltz, E. D. Spoerke, and S. I. Stupp, (2008) “Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel" Chemical reviews 108(11): 4754–4783. DOI: 10.1021/cr8004422.
  6. [6] N. Bano, S. A. S. Abu Bakar, S. S. Jikan, H. Basri, and N. Kanasan. “Extraction of Biological Apatite from Cow Bone at Different Calcination Temperatures: A Comparative Study”. In: Key Engineering Materials. 796. Trans Tech Publ. 2019, 46–52. DOI: 10.4028/www.scientific.net/KEM.796.46.
  7. [7] M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas, and H. Figueiredo, (2010) “Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone" Ceramics international 36(8): 2383–2393. DOI:10.1016/j.ceramint.2010.07.016.
  8. [8] W. Khoo, F. Nor, H. Ardhyananta, and D. Kurniawan, (2015) “Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures" Procedia Manufacturing 2: 196–201. DOI:10.1016/j.promfg.2015.07.034.
  9. [9] P. A. F. Sossa, B. S. Giraldo, B. C. G. Garcia, E. R. Parra, and P. J. A. Arango, (2018) “Comparative study between natural and synthetic Hydroxyapatite: structural, morphological and bioactivity properties" Matéria (Rio de Janeiro) 23: DOI: 10.1590/s1517- 707620180004.0551.
  10. [10] V. S. Kattimani, S. Kondaka, and K. P. Lingamaneni, (2016) “Hydroxyapatite—Past, present, and future in bone regeneration" Bone and Tissue Regeneration Insights 7: BTRI–S36138.
  11. [11] M. Mucalo. Hydroxyapatite (HAp) for biomedical applications. Elsevier, 2015. DOI: 10.1016/C2013-0-16440-9.
  12. [12] M. Herliansyah, D. Nasution, M. H. Bin Abdul Shukor, A. Ide-Ektessabi, M. W. Wildan, and A. Tontowi. “Preparation and characterization of natural hydroxyapatite: A comparative study of bovine bone hydroxyapatite and hydroxyapatite from calcite”. In: Materials Science Forum. 561. Trans Tech Publ. 2007, 1441–1444. DOI: 10.4028/0-87849-462-6.1441.
  13. [13] D. S. Razaq, B. Kurniawan, D. R. Munazat, K. Watanabe, and H. Tanaka, (2020) “Role of Potassium Substitution in the Magnetic Properties and Magnetocaloric Effect in La0. 8- xKxBa0. 05Sr0. 15MnO3 (0 ≤ x ≤ 0.20)"Crystals 10(5): 407.
  14. [14] R. Guinebretière. X-ray diffraction by polycrystalline materials. John Wiley & Sons, 2013. DOI: 10.1002/9780470612408.
  15. [15] J. O. Akindoyo, S. Ghazali, M. D. Beg, and N. Jeyaratnam, (2019) “Characterization and elemental quantification of natural hydroxyapatite produced from cow bone" Chemical Engineering & Technology 42(9): 1805–1815. DOI: 10.1002/ceat.201800636.
  16. [16] E. Hosseinzadeh, M. Davarpanah, N. H. Nemati, and S. Tavakoli, (2014) “Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method" International journal of organ transplantation medicine 5(1): 23.
  17. [17] Y. Xin, H. Ikeuchi, J. Hong, H. Nishikawa, and T. Shirai, (2019) “Oxidative decomposition of volatile organic compound on hydroxyapatite with oriented crystal structures" Journal of the Ceramic Society of Japan 127(4): 263–266. DOI: 10.2109/jcersj2.18185.
  18. [18] N. M. Pu’ad, P. Koshy, H. Abdullah, M. Idris, and T. Lee, (2019) “Syntheses of hydroxyapatite from natural sources" Heliyon 5(5): e01588. DOI: 10.1016/j.heliyon.2019.e01588.
  19. [19] R.-X. Sun, Y. Lv, Y.-R. Niu, X.-H. Zhao, D.-S. Cao, J. Tang, X.-C. Sun, and K.-Z. Chen, (2017) “Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders" Ceramics International 43(18): 16792–16798. DOI: 10.1016/j.ceramint.2017.09.075.
  20. [20] H. L. Jaber, A. S. Hammood, and N. Parvin, (2018) “Synthesis and characterization of hydroxyapatite powder from natural camelus bone" Journal of the Australian Ceramic Society 54(1): 1–10. DOI: 10.1007/s41779-017-0120-0.
  21. [21] S. S. Rahavi, O. Ghaderi, A. Monshi, and M. H. Fathi, (2017) “A comparative study on physicochemical properties of hydroxyapatite powders derived from natural and synthetic sources" Russian Journal of Non-Ferrous Metals 58(3): 276–286. DOI: 10.3103/S1067821217030178.