Jaslin Sofea1, Wei NianWong1, Javry Tan Yee Hern1, Tommy Lee Hoong Wy1, Phei Li Lau1, and Ianatul Khoiroh This email address is being protected from spambots. You need JavaScript enabled to view it.1

1Department of Chemical Environmental Engineering, Faculty of Engineering and Science, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia


 

Received: December 6, 2020
Accepted: April 5, 2021
Publication Date: December 23, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202210_25(5).0010  


ABSTRACT


The present work gives isobaric vapour-liquid equilibrium (VLE) data for the binary system of acetone + methanol and its ternary system in the presence of two different entrainers, namely 1-butyl-3-methylmidazolium tetrafluoroborate [BMIM][BF4] (ionic liquid) and N,N-dimethylformamide (DMFA) + propylene glycol mixture, respectively. [BMIM][BF4] was selected as the potential entrainers in this work are mainly due to its ionic liquid properties such as negligible vapour pressure and producing no less-volatile components at the top of the distillation column. The VLE measurements were made using a recirculating type of Othmer equilibrium still. The experimental data obtained for the binary system of acetone-methanol were compared with published literature data. To activity coefficient models, namely the NRTL and the UNIQUAC models were employed to correlate the experimental VLE data.


Keywords: Vapor-liquid equilibrium; Azeotrope; entrainers; Ionic liquids; Activity coefficient


REFERENCES


  1. [1] W. Li, X. Chen, H. Yin, L. Li, and T. Zhang, (2018) “Isobari Vapor-Liquid Equilibrium for 2-Butanone + Ethanol System Containing Different Ionic Liquids at 101.3 kPa" Journal of Chemical and Engineering Data 63(2): 380–388. DOI: 10.1021/acs.jced.7b00783.
  2. [2] W. Li, D. Sun, T. Zhang, S. Dai, F. Pan, and Z. Zhang, (2014) “Separation of acetone and methanol azeotropic system using ionic liquid as entrainer" Fluid Phase Equilibria 383: 182–187. DOI: 10.1016/j.fluid.2014.10.011.
  3. [3] H. Matsuda, V. Liebert, K. Tochigi, and J. Gmehling, (2013) “Influence of sulfate-based anion ionic liquids on the separation factor of the binary azeotropic system acetone+ methanol" Fluid Phase Equilibria 340: 27–30. DOI: 10.1016/j.fluid.2012.12.006.
  4. [4] E. Vercher, A. V. Orchillés, P. J. Miguel, V. González-Alfaro, and A. Martínez-Andreu, (2006) “Isobaric Vapor–Liquid Equilibria for Acetone+Methanol+Lithiu Nitrate at 100Kpa" Fluid Phase Equilibria 250(1-2):131–137. DOI: 10.1016/j.fluid.2006.09.007.
  5. [5] E. Boli and E. Voutsas, (2020) “Ionic liquids as entrainers for the separation of azeotropic mixtures: Experimental measurements and COSMO-RS predictions" Chemical Engineering Science 219: 115579. DOI: 10.1016/j.ces.2020.115579.
  6. [6] A. I. Yeh, L. Berg, and K. J.Warren, (1988) “The Separation of Acetone-Methanol Mixture by Extractive Distillation" Chemical Engineering Communications 68(1): 69–79. DOI: 10.1080/00986448808940398.
  7. [7] S. Chen, S. Zhang, X. Liu, J. Wang, J. Wang, K. Dong, J. Sun, and B. Xu. Ionic liquid clusters: Structure, formation mechanism, and effect on the behavior of ionic liquids. 2014. DOI: 10.1039/c3cp53116c.
  8. [8] F. Lessan and R. Foudazi, (2020) “Effect of [EMIM][BF4] ionic liquid on the properties of ultrafiltration membranes" Polymer 210: DOI: 10.1016/j.polymer.
    2020.122977.
  9. [9] M. Mu, J. Cheng, C. Dai, N. Liu, Z. Lei, Y. Ding, and J. Lu, (2019) “Removal of gaseous acetic acid using ionic liquid [EMIM][BF4]" Green Energy and Environment 4(2): 190–197. DOI: 10.1016/j.gee.2019.01.004.
  10. [10] R. Kaswan, M. D. Singh, S. Chandrasekara Sivasubramanian, and A. Dalvi, (2019) “Preparation and characterization of novel solid electrolytes based on [EMIM] BF4 and lithium nitrate confined silica gels" Electrochimica Acta 323: 134841. DOI: 10.1016/j.electacta.2019.134841.
  11. [11] Y. Luo, S. Shao, H. Xu, and C. Tian, (2011) “Dehumidification Performance Of [EMIM][BF4]" Applied Thermal Engineering 31(14-15): DOI: 10.1016/j.applthermaleng.2011.04.050.
  12. [12] H. Renon and J. M. Prausnitz, (1968) “Local compositions in thermodynamic excess functions for liquid mixtures" AIChE Journal 14(1): 135–144. DOI: 10.1002/aic.690140124.
  13. [13] D. S. Abrams and J. M. Prausnitz, (1975) “Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems" AIChE Journal 21(1): 116–128. DOI: 10.1002/aic.690210115.
  14. [14] H. I. Britt and R. H. Luecke, (1973) “The estimation of parameters in nonlinear, implicit models" Technometrics 15(2): 233–247. DOI: 10.1080/00401706.1973.10489037.
  15. [15] S. Al-Asheh and F. Banat, (2005) “Isobaric vapor-liquid equilibrium of acetone + methanol system in the presence of calcium bromide" Journal of Chemical and Engineering Data 50(6): 1789–1793. DOI: 10.1021/je049688b.
  16. [16] X. Chen, B. Yang, A. A. Abdeltawab, S. S. Al-Deyab, G. Yu, and X. Yong, (2015) “Isobaric vapor-liquid equilibrium for acetone + methanol + phosphate ionic liquids" Journal of Chemical and Engineering Data 60(3):612–620. DOI: 10.1021/je5007373.
  17. [17] A. V. Orchillés, P. J. Miguel, E. Vercher, and A. Martínez-Andreu, (2007) “Isobaric vapor-liquid equilibria for methyl acetate + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100 kPa" Journal of Chemical and Engineering Data 52(3):915–920. DOI: 10.1021/je600518s.
  18. [18] P. J. Carvalho, I. Khan, A. Morais, J. F. Granjo, N. M. Oliveira, L. M. Santos, and J. A. Coutinho, (2013) “A new microebulliometer for the measurement of the vaporliquid equilibrium of ionic liquid systems" Fluid Phase Equilibria 354: 156–165. DOI: 10.1016/j.fluid.2013.06.015.