Edward Emenike Chikwelu1 and Naven Chetty This email address is being protected from spambots. You need JavaScript enabled to view it.1

1School of Chemistry and Physics, College of Agriculture, Engineering, and Science, University of KwaZulu-Natal, Pietermaritzburg Campus, South Africa


Received: June 16, 2021
Accepted: August 10, 2021
Publication Date: November 24, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.6180/jase.202208_25(4).0012  


Over two decades, this landslide in Nanka Community, Anambra State, Nigeria, in the eastern phase of Awka-Orlu upland, has been active and persistent, defying many control measures that have been put in place and causing the loss of property, lives, and assets to increase. As a result, this research work involves the study of geo-engineering and geophysical measurements of the slide site to delineate the aerial scale and direction of movement of the landslide zone, determine the lithological portion, estimate the thickness of the sliding sheet, and delineate the water-saturated areas. The data was collected using ABEM Terrameter SAS 4000 and ABEM LUND ES464 electrode selector system and processed using RES2DINV software for a 2D subsurface image. During data acquisition, a Wenner array was set-up as this array is capable of imaging deeper profile data, and apparent resistivity is easily calculated in the field. The results of the models indicate that the study area was mainly clayey and sandstone formation with mostly low resistivity values correspond to the shale layers and groundwater zones. However, gravel deposit was also present in some areas, as indicated by both the imaging and geological measurements.

Keywords: landslide, 2D resistivity, geophysics, lithology.


  1. [1] A. Bichler, P. Bobrowsky, M. Best, M. Douma, J. Hunter, T. Calvert, and R. A. Burns, (2004) “Three- dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide" Landslides 1: 29–40. DOI: 10.1007/S10346-003-0008-7.
  2. [2] V. Lapenna, P. Lorenzo, A. Perrone, S. Piscitelli, F. Sdao, and E. Rizzo, (2003) “High-resolution geoelectrical tomographies in the study of Giarrossa landslide (southern Italy)" Bulletin of Engineering Geology and the Environment 62(3): 259–268. DOI: 10.1007/ s10064-002-0184-z.
  3. [3] D. Jongmans and S. Garambois, (2007) “Geophysical investigation of landslides: a review" Bulletin de la Société géologique de France 178(2): 101–112. DOI: 10.2113/gssgfbull.178.2.101.
  4. [4] F. Bruno and F. Marillier, (2000) “Geophysical surveys on two landslides in the Swiss Alps, a comparison." XXV Assembly European Geophysical Society:
  5. [5] R. G. Sastry and S. K. Mondal, (2013) “Geophysical characterization of the Salna sinking zone, Garhwal Himalaya, India" Surveys in Geophysics 34(1): 89–119. DOI: 10.1007/s10712-012-9206-y.
  6. [6] R. A. Gowen, A. Smith, A. D. Fortes, S. Barber, P. Brown, P. Church, G. Collinson, A. J. Coates, G. Collins, I. A. Crawford, et al., (2011) “Penetrators for in situ subsurface investigations of Europa" Advances in Space Research 48(4): 725–742.
  7. [7] A. Ola-Buraimo and I. Akaegbobi, (2012) “Neogene dinoflagellate cyst assemblages of the late Miocene-Pliocene Ogwashi-Asaba sediment in umuna-1 well, Anambra basin, southeastern Nigeria" Journal of Petroleum and Gas Exploration Research 2(6): 115–124.
  8. [8] M. Israil and A. Pachauri, (2003) “Geophysical characterization of a landslide site in the Himalayan foothill region" Journal of Asian Earth Sciences 22(3): 253– 263. DOI: 10.1016/S1367-9120(03)00063-4.
  9. [9] Y. Sasaki, (1994) “3-D resistivity inversion using the finite-element method" Geophysics 59(12): 1839–1848. DOI: 10.1190/1.1443571.
  10. [10] O. Sass, R. Bell, and T. Glade, (2008) “Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany)" Geomorphology 93(1-2): 89–103. DOI:
  11. [11] R. Andrade, (2011) “Intervention of Electrical Resistance Tomography (ERT) in resolving hydrological problems of a semi arid granite terrain of Southern India" Journal of the Geological Society of India 78: 337–344. DOI: 10.1007/S12594-011-0100-X.
  12. [12] A. I. Riwayat, M. A. A. Nazri, and M. H. Z. Abidin. “Application of electrical resistivity method (ERM) in groundwater exploration”. In: Journal of Physics: Conference Series. 995. 1. IOP Publishing. 2018, 012094. DOI: 10.1088/1742-6596/995/1/012094.
  13. [13] A. I. Riwayat, M. A. A. Nazri, and M. H. Z. Abidin. “Detection of Potential Shallow Aquifer Using Electrical Resistivity Imaging (ERI) at UTHM Campus, Johor Malaysia”. In: Journal of Physics: Conference Series. 995. 1. IOP Publishing. 2018, 012103. DOI: 10 . 1088/1742-6596/995/1/012103.
  14. [14] Z. Asry, A. Samsudin, W. Z. Yaacob, and J. Yaakub, (2012) “Groundwater Exploration Using 2-D Geoelectrical Resistivity Imaging Technique at Sungai. Udang, Melaka" Journal of Earth Science and Engineering 2: 624–630.
  15. [15] R. Saad, M. Nawawi, and E. Mohamad, (2012) “Groundwater detection in alluvium using 2-D electrical resistivity tomography (ERT)" Electronic Journal of Geotechnical Engineering 17: 369–376.
  16. [16] A. T. S. Azhar, Z. A. M. Hazreek, M. Aziman, D. S. Haimi, and Z. M. Hafiz, (2016) “Acidic Barren Slope Profiling using Electrical Resistivity Imaging (ERI) at Ayer Hitam area Johor, Malaysia" Journal of Physics: Conference Series 710: 012008. DOI: 10.1088/1742- 6596/710/1/012008.
  17. [17] M. H. Loke, I. Acworth, and T. Dahlin, (2003) “A com- parison of smooth and blocky inversion methods in 2D electrical imaging surveys" Exploration geophysics 34(3): 182–187. DOI: 10.1071/EG03182.
  18. [18] M. H. Z. Abidin, M. F. T. Baharuddin, and A. F. Kamarudin. Application of geoelectrical method in subsurface profile forensic study. 2010.
  19. [19] H. Ramazi and M. Jalali, (2015) “Contribution of geophysical inversion theory and geostatistical simulation to determine geoelectrical anomalies" Studia Geophysica et Geodaetica 59(1): 97–112.
  20. [20] J. E. Chambers, O. Kuras, P. I. Meldrum, R. D. Ogilvy, and J. Hollands, (2006) “Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site" Geophysics 71(6): B231–B239. DOI: 10.1190/1.2360184.
  21. [21] O. Kaufmann, J. Deceuster, and Y. Quinif, (2012) “An electrical resistivity imaging-based strategy to enable sitescale planning over covered palaeokarst features in the Tournaisis area (Belgium)" Engineering geology 133: 49–65. DOI: 10.1016/j.enggeo.2012.01.017.
  22. [22] K. Leontarakis and G. V. Apostolopoulos, (2013) “Model Stacking (MOST) technique applied in cross-hole ERT field data for the detection of Thessaloniki ancient walls’ depth" Journal of Applied Geophysics 93: 101– 113. DOI: 10.1016/j.jappgeo.2013.04.004.
  23. [23] A. Binley and A. Kemna. “DC Resistivity and In- duced Polarization Methods”. In: 2005. DOI: 10.1007/ 1-4020-3102-5_5.
  24. [24] J. Coggon. Electromagnetic and electrical modeling by the finite element method: Geophysics. 1971. DOI: 10.1190/1. 1440151.
  25. [25] I. Obiadi, C. Nwosu, N. Ajaegwu, E. Anakwuba, N. Onuigbo, E. Akpunonu, and O. Ezim, (2011) “Gully erosion in Anambra State, south east Nigeria: Issues and solution" International Journal of Environmental Sciences 2(2): 795–804.
  26. [26] J. C. Egbueri and O. Igwe, (2021) “The impact of hydrogeomorphological characteristics on gullying processes in erosion-prone geological units in parts of southeast Nigeria" Geology, Ecology, and Landscapes 5(3): 227– 240. DOI: 10.1080/24749508.2020.1711637.
  28. [28] K. Oyedele, S. Oladele, and C. Okoh, (2012) “Geoassessment of subsurface conditions in Magodo brook es- tate, Lagos, Nigeria."
  29. [29] C. Kern-Simirenko and W. Wawro, (1990) “Reference Materials in Russian and Soviet Area Studies, 1987-88" Russian Review: 175–181.
  31. [31] N. B. Uchechukwu, J. C. Agunwamba, I. T. Tenebe, and G. O. Bamigboye. “Geography of Udi Cuesta contribution to hydro-meteorological pattern of the South Eastern Nigeria”. In: Engineering and Mathematical Topics in Rainfall. IntechOpen, 2018. DOI: 10. 5772/intechopen.72867.
  32. [32] C. Chinweze. “Erosion and Climate Change Challenges: Anambra State, Nigeria Case Study”. In: IAIA17 Conference Proceedings. 2017.
  33. [33] I. Muchingami, D. Hlatywayo, J. Nel, and C. Chuma, (2012) “Electrical resistivity survey for groundwater investigations and shallow subsurface evaluation of the basaltic-greenstone formation of the urban Bulawayo aquifer" Physics and Chemistry of the Earth, Parts A/B/C 50: 44–51. DOI: 10.1016/j.pce.2012.08.014.
  34. [34] D. A. Nazaruddin, Z. Amiruzan, H. Hussin, M. M. A. Khan, and M. Jafar, (2016) “Geological Mapping and Multi-Electrode Resistivity Survey for Potential Groundwater Exploration in Ayer Lanas Village and Its Surroundings, Jeli District, Kelantan, Malaysia" GEOPHYSICS 2016:
  35. [35] A. Batayneh, (2006) “Use of electrical resistivity meth- ods for detecting subsurface fresh and saline water and delineating their interfacial configuration: a case study of the eastern Dead Sea coastal aquifers, Jordan" Hydrogeology Journal 14: 1277–1283. DOI: 10.1007/S10040- 006-0034-3.
  36. [36] T. Dahlin and M. H. Loke, (1998) “Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling" Journal of applied geophysics 38(4): 237–249. DOI: 10.1016/S0926-9851(97)00030-X.
  37. [37] B. Cubbage, G. E. Noonan, and D. F. Rucker, (2017) “A modified Wenner array for efficient use of eight-channel resistivity meters" Pure and Applied Geophysics 174(7): 2705–2718. DOI: 10.1007/s00024-017-1535-9.
  38. [38] M. H. Loke. Tutorial: 2-D and 3-D electrical imaging surveys. 2004.
  39. [39] S. MacInnes and M. Raymond, (2001) “Zonge Data Processing Two-dimensional AMT Modeling Version 4.00":
  40. [40] A. R. Samsudin, U. Hamzah, A. G. Rafek, and R. Yaacup, (2000) “Application of geoelectrical resistivity imaging for site investigation":
  41. [41] M. Loke and R. Barker, (1996) “Practical techniques for 3D resistivity surveys and data inversion1" Geophysical prospecting 44(3): 499–523. DOI: 10.1111/j.1365- 2478.1996.tb00162.x.
  42. [42] I. Muchingami, J. Nel, Y. Xu, G. Steyl, and K. Reynolds, (2013) “On the use of electrical resistivity methods in monitoring infiltration of salt fluxes in dry coal ash dumps in Mpumalanga, South Africa" Water SA 39(4): 491–498. DOI: 10.4314/wsa.v39i4.7.
  43. [43] T. Ralebakeng. “Research Into the Capacity of Manka C10 Community Council to Manage Projects Performance and Origination". (phdthesis). University of Johannes- burg, 2015.
  44. [44] L. Unah. Erosion crisis swallows homes and livelihoods in Nigeria. 2020. URL: https://www.climatechangenews. com/2020/01/20/erosion-crisis-swallows-homeslivelihoods-nigeria/.
  45. [45] H. Gercek, (2007) “Poisson’s ratio values for rocks" International Journal of Rock Mechanics and Mining Sciences 44(1): 1–13. DOI: 10 . 1016 / j . ijrmms . 2006.04.011.
  46. [46] F. Nicollin, D. Gibert, N. Lesparre, and C. Nussbaum, (2010) “Anisotropy of electrical conductivity of the excavation damaged zone in the Mont Terri Underground Rock Laboratory" Geophysical Journal International 181(1): 303–320. DOI: 10.1111/j.1365-246X.2010.04517. x.