Wan Hazman Danial This email address is being protected from spambots. You need JavaScript enabled to view it.1, Noriliya Aina Norhisham1, Ahmad Fakhrurrazi Ahmad Noorden2, and Zaiton Abdul Majid3

1Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
2Advanced Optoelectronics Research Group (CAPTOR), Department of Physics, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
3Department of Chemistry, Faculty of Science, University Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia


 

Received: December 12, 2020
Accepted: May 10, 2021
Publication Date: October 22, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202206_25(3).0016  


ABSTRACT


A facile and non-hazardous route for synthesis of triangle-shaped graphene nanoflakes and graphene quantum dots (GQDs) suspension via electrochemical exfoliation has been reported. In this work, a simple electrochemical technique was employed using pristine and heated graphite electrodes under the influence of anionic surfactant, sodium dodecylbenzene sulfonate (SDBS). The synthesized graphene nanoflakes and GQDs suspension were characterized using UV-visible spectroscopy, transmission electron microscope (TEM) and Raman Spectroscopy. The UV absorption spectra showed a bathochromic shift from the typical π → π* transition peak which due to the introduction of oxygen groups and/or functionalization of SDBS into the graphitic layers. Morphological analyses using TEM revealed the usage of heated graphite electrodes (600 °C at 5 min) produced a triangle-shaped graphene nanoflakes with an average size of ∼34 nm while the average size of the graphene nanoflakes obtained using the pristine graphite is ∼47 nm. A possible mechanism for the exfoliation of such morphology has been proposed. The graphene nanoflakes which have size less than 10 nm from both samples can be attributed to the presence of the GQDs. Raman analysis revealed ID/IG ratio of 0.223 and 0.203 for graphene nanoflakes electrochemically exfoliated from pristine and heated graphite respectively, which signifies a better quality and crystallinity and has low defects within the conjugated graphene backbone. The utilization of this electrochemical approach might expectantly pave the way towards the production of graphene nanoflakes with controlled morphology and low structural defects, which can be an efficient top-down process yet feasible for mass production.


Keywords: Electrochemical, exfoliation, graphene nanoflakes, graphene quantum dots, triangle-shaped


REFERENCES


  1. [1] Kong W., Kum H., Bae S. H., Shim J., Kim H., Kong L., Meng Y., Wang K., Kim, C. and Kim J., (2019) “Path towards graphene commercializationnm lab to market" Nature Nanotechnology 14(10): 927–938. DOI: https: //doi.org/10.1038/s41565-019-0555-2.
  2. [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, (2004) “Electric field in atomically thin carbon films" Science 306(5696): 666–669. DOI: 10 . 1126 / science.1102896.
  3. [3] S. Wei, R. Zhang, Y. Liu, H. Ding, and Y. L. Zhang, (2016) “Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: An efficient photocatalyst promoter" Catalysis Communications 74: 104–109. DOI: 10.1016/j.catcom.2015.11.010.
  4. [4] E. Kusrini, F. Oktavianto, A. Usman, D. P. Mawarni, and M. I. Alhamid, (2020) “Synthesis, characterization, and performance of graphene oxide and phosphorylated graphene oxide as additive in water-based drilling fluids" Applied Surface Science 506: 145005. DOI: 10.1016/ j.apsusc.2019.145005.
  5. [5] E. Kusrini, A. Suhrowati, A. Usman, M. Khalil, and V. Degirmenci, (2019) “Synthesis and characterization of graphite oxide, graphene oxide, and reduced graphene oxide from graphite waste using modified hummers’ method and zinc as reducing agent" International Journal of Technology 10(6): 1093–1104. DOI: 10.14716/ijtech. v10i6.3639.
  6. [6] F. Qing, Y. Hou, R. Stehle, and X. Li, (2019) “Chemical vapor deposition synthesis of graphene films" APL Materials 7(2): 020903. DOI: 10.1063/1.5078551.
  7. [7] S. H. Lee, D. Y. Kim, J. Lee, S. B. Lee, H. Han, Y. Y. Kim, S. C. Mun, S. H. Im, T. H. Kim, and O. O. Park, (2019) “Synthesis of Single-Crystalline Hexagonal Graphene Quantum Dots from Solution Chemistry" Nano Letters 19(8): 5437–5442. DOI: 10 . 1021 / acs . nanolett.9b01940.
  8. [8] W. H. Danial, A. Chutia, Z. A. Majid, R. Sahnoun, and M. Aziz. “Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system”. In: AIP Conference Proceedings. 1669. 2015, 020020. DOI: 10.1063/1.4919158.
  9. [9] W. H. Danial, N. A. Norhisham, A. F. Ahmad Noorden, Z. Abdul Majid, K. Matsumura, and A. Iqbal. A short review on electrochemical exfoliation of graphene and graphene quantum dots. 2021. DOI: 10.1007/s42823- 020-00212-3.
  10. [10] Y. L. Zhong and T. M. Swager, (2012) “Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization" Journal of the American Chemical Society 134(43): 17896–17899. DOI: 10 . 1021 / ja309023f.
  11. [11] X. Wang and L. Zhang, (2019) “Green and facile production of high-quality graphene from graphite by the combination of hydroxyl radicals and electrical exfoliation in different electrolyte systems" RSC Advances 9(7):
    3693–3703. DOI: 10.1039/c8ra09752f.
  12. [12] A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D. H. Kim, K. H. Lim, J. Li, and P. Chen, (2014) “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing" Advanced Functional Materials 24(20): 3021–3026. DOI: 10.1002/adfm.201303441.
  13. [13] Y. Yan, H. Li, Q. Wang, H. Mao, and W. Kun, (2017) “Controllable ionic liquid-assisted electrochemical exfoliation of carbon fibers for the green and large-scale preparation of functionalized graphene quantum dots endowed with multicolor emission and size tunability" Journal of Materials Chemistry C 5(24): 6092–6100. DOI: 10. 1039/c7tc01342f.
  14. [14] S. Yang, S. Brüller, Z. S. Wu, Z. Liu, K. Parvez, R. Dong, F. Richard, P. Samorì, X. Feng, and K. Müllen, (2015) “Organic Radical-Assisted Electrochemical Exfoliation for the Scalable Production of High-Quality Graphene" Journal of the American Chemical Society 137(43): 13927–13932. DOI: 10.1021/jacs.5b09000.
  15. [15] Y. Z. Htwe, W. S. Chow, Y. Suda, A. A. Thant, and M. Mariatti, (2019) “Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process" Applied Surface Science 469: 951–961. DOI: 10.1016/j.apsusc.2018.11.029.
  16. [16] Q. Zhou, G. Xia, M. Du, Y. Lu, and H. Xu, (2019) “Scotch-tape-like exfoliation effect of graphene quantum dots for efficient preparation of graphene nanosheets in water" Applied Surface Science 483: 52–59. DOI: 10. 1016/j.apsusc.2019.03.290.
  17. [17] S. Mutyala and J. Mathiyarasu, (2015) “Preparation of graphene nanoflakes and its application for detection of hydrazine" Sensors and Actuators, B: Chemical 210: 692–699. DOI: 10.1016/j.snb.2015.01.033.
  18. [18] C. Mansilla Wettstein, F. P. Bonafé, M. B. Oviedo, and C. G. Sánchez, (2016) “Optical properties of graphene nanoflakes: Shape matters" Journal of Chemical Physics 144(22): 224305. DOI: 10.1063/1.4953172. arXiv: 1512.00489.
  19. [19] S. Ahirwar, S. Mallick, and D. Bahadur, (2017) “Electrochemical Method to Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots" ACS Omega 2(11): 8343–8353. DOI: 10.1021/acsomega.7b01539.
  20. [20] M. J. Nine, T. T. Tung, and D. Losic. “Self-Assembly of Graphene Derivatives: Methods, Structures, and Applications”. In: Comprehensive Supramolecular Chemistry II. 9. Elsevier, 2017, 47–74. DOI: 10.1016/B978-0- 12-409547-2.12634-4.
  21. [21] Z. Zhao, P. Bai, W. Du, B. Liu, D. Pan, R. Das, C. Liu, and Z. Guo. An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications. 2020. DOI: 10.1016/j.carbon.2020. 08.040.
  22. [22] S. K. Tiwari, A. Huczko, R. Oraon, A. De Adhikari, and G. C. Nayak, (2017) “Facile electrochemical synthesis of few layered graphene from discharged battery electrode and its application for energy storage" Arabian Journal of Chemistry 10(4): 556–565. DOI: 10.1016/j. arabjc.2015.08.016.
  23. [23] I. Razado-Colambo, J. Avila, D. Vignaud, S. Godey, X. Wallart, D. P. Woodruff, and M. C. Asensio, (2018) “Structural determination of bilayer graphene on SiC(0001) using synchrotron radiation photoelectron diffraction" Scientific Reports 8(1): 10190. DOI: 10.1038/s41598- 018-28402-0.
  24. [24] M. Li and R. Luo. “Effect of heating rate on the properties of a graphite/phenolic-based composite”. In: Proceedings of the 5th International Conference on Information Engineering for Mechanics and Materials. 21. Paris: Atlantis Press, 2015. DOI: 10.2991/icimm-15. 2015.104.
  25. [25] S. Ruiz, J. A. Tamayo, J. D. Ospina, D. P. N. Porras, M. E. V. Zapata, J. H. M. Hernandez, C. H. Valencia, F. Zuluaga, and C. D. G. Tovar, (2019) “Antimicrobial films based on nanocomposites of chitosan/poly(Vinyl alcohol)/graphene oxide for biomedical applications" Biomolecules 9(3): 109. DOI: 10.3390/ biom9030109.
  26. [26] G. A. Ali, M. R. Thalji, W. C. Soh, H. Algarni, and K. F. Chong, (2020) “One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application" Journal of Solid State Electrochemistry 24(1): 25–34. DOI: 10.1007/s10008-019-04449-5.
  27. [27] B. Nazari, Z. Ranjbar, R. R. Hashjin, A. Rezvani Moghaddam, G. Momen, and B. Ranjbar, (2019) “Dispersing graphene in aqueous media: Investigating the effect of different surfactants" Colloids and Surfaces A: Physicochemical and Engineering Aspects 582: 123870. DOI: 10.1016/j.colsurfa.2019.123870.
  28. [28] S. Li, Y. Chen, X. He, X. Mao, Y. Zhou, J. Xu, and Y. Yang, (2019) “Modifying Reduced Graphene Oxide by Conducting Polymer Through a Hydrothermal Polymerization Method and its Application as Energy Storage Electrodes" Nanoscale Research Letters 14(1): 226. DOI: 10.1186/s11671-019-3051-6.
  29. [29] J. Peng, Z. Zhao, M. Zheng, B. Su, X. Chen, and X. Chen, (2020) “Electrochemical synthesis of phosphorus and sulfur co-doped graphene quantum dots as efficient electrochemiluminescent immunomarkers for monitoring okadaic acid" Sensors and Actuators, B: Chemical 304: 127383. DOI: 10.1016/j.snb.2019.127383.
  30. [30] R. V. Nair, R. T. Thomas, V. Sankar, H. Muhammad, M. Dong, and S. Pillai, (2017) “Rapid, Acid-Free Synthesis of High-Quality Graphene Quantum Dots for Aggregation Induced Sensing of Metal Ions and Bioimaging" ACS Omega 2(11): 8051–8061. DOI: 10 . 1021 / acsomega.7b01262.
  31. [31] F. Sharif, A. S. Zeraati, P. Ganjeh-Anzabi, N. Yasri, M. Perez-Page, S. M. Holmes, U. Sundararaj, M. Trifkovic, and E. P. Roberts, (2020) “Synthesis of a high-temperature stable electrochemically exfoliated graphene" Carbon 157: 681–692. DOI: 10.1016/j.carbon.2019.10. 042.
  32. [32] H. Huang, S. Yang, Q. Li, Y. Yang, G. Wang, X. You, B. Mao, H. Wang, Y. Ma, P. He, Z. Liu, G. Ding, and X. Xie, (2018) “Electrochemical Cutting in Weak Aqueous Electrolytes: The Strategy for Efficient and Controllable Preparation of Graphene Quantum Dots" Langmuir 34(1): 250–258. DOI: 10 . 1021 / acs . langmuir. 7b03425.
  33. [33] H. Kalita, V. S. Palaparthy, M. S. Baghini, and M. Aslam, (2020) “Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties" Carbon 165: 9– 17. DOI: 10.1016/j.carbon.2020.04.021.
  34. [34] Z. Zhao, W. Cai, Z. Xu, X. Mu, X. Ren, B. Zou, Z. Gui, and Y. Hu, (2020) “Multi-role p-styrene sulfonate assisted electrochemical preparation of functionalized graphene nanosheets for improving fire safety and mechanical property of polystyrene composites" Composites Part B: Engineering 181: 107544. DOI: 10.1016/j. compositesb.2019.107544.