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Modeling the Extreme Rainfall Data of Several Sites in Sabah using
Sandwich Estimator
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When the extreme data were obtained from several sites in a region, spatial extreme analysis is always been
considered. In this paper, we model the annual maximum rainfall data by using generalized extreme value
distribution. We fit the model independently for each site to prevent extreme value complex modeling. However,
it also cause the statistical assumption of dependency between sites been violated. Therefore, we applied the
sandwich estimator to correct the variance of the model. We also consider an analysis of small sample sizes of
the observed data. The method of penalized maximum likelihood estimation was carried out to improve the
inference of the model. In the end, the return levels of the annual maximum rainfall data were computed by
using the corrected model.
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1. Introduction

Spatial extreme analysis has been proposed in many previ-
ous studies to model spatial dependency within extreme
events in continuous space using recorded observations [1–
3]. When studying the extremes of two or more processes,
each individual process can be modeled using univariate
techniques which is generalized extreme value distribution,
but there also strong arguments for studying the extreme
value inter-relationship. Besides that, the dependency be-
tween variables are modeling by using multivariate ex-
treme value distribution. However, modeling multivariate
extreme lead to some issues, which creates high dimension-
ality difficulties for both model validation and computation.
There are a few examples of multivariate modeling with
two dimensional, bivariate and other analyses for envi-
ronmental dependence data can be found in [4]. To avoid
the model misspecification and for efficient computation,
a marginal estimation is a good alternative method for

modeling multivariate extremes. Therefore, the sandwich
estimator needed to be the standard error modification to
capture the data dependency. The properties and advan-
tages of sandwich estimator were discussed in [5].

In this study, we model the annual maximum rainfall
data independently by using generalized extreme value
distribution. It was well recognized that many previous
studies have been applied the Generalized Extreme Value
(GEV) distribution in extreme events especially in hydrol-
ogy [1, 6, 7]. The GEV distribution used to model the
annual maximum series (AMS) and partial duration series
(PDS) [8]. Since the statistical assumption of dependency
between sites is violated if the annual rainfall data were
modeling independently, therefore, sandwich estimator is
applied to correct the variance of the model. The applica-
tion then used to compute the return level of the rainfall
data. Since there are small sample size issues in maximum
likelihood estimation (MLE), therefore the Penalized maxi-
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mum likelihood estimation (PMLE) which proposed by [4,
9] is applied to avoid the problem.

2. Methodology

This section discusses the model fitting by using GEV distri-
bution to annual maximum rainfall data and its parameter
estimation. Then, the sandwich estimator was applied as
a statistical modification to give a more appropriate esti-
mates of standard error. In this study, R software used for
computational purpose with our own written code.

2.1. Generalized Extreme Value

The cumulative distribution function (CDF) of Generalized
Extreme Value (GEV) distribution is:

G(z, µ, σ, ξ) = exp
{
−[1 + ξ(

z− µ

σ
)]

1
ξ

}
i f 1+ ξ(

z− µ

σ
) > 0

(1)
where µ, σ and ξ represent location parameter, scale param-
eter and shape parameter, respectively. The GEV consists of
three families of distribution that can be determined by the
shape parameter; Gumbel (ξ=0), Frechet (ξ>0) and nega-

tive Weibull distribution (ξ<0). If choosing either one from
GEV distribution, uncertainty would be ignored, and it
may cause a biased fit. Therefore, the GEV is the appropri-
ate model for the extreme data since it combines the three
families into a single distribution. The data themselves
will determine the most appropriate distribution through
inferences of shape parameters [4].

2.2. The Maximum Likelihood Estimation (MLE)

The parameter estimation of the GEV can be obtained by
maximizing the likelihood of the observed data (indepen-
dently random variable) with respect to all the parameters
[6]. The corresponding likelihood function of the GEV as
shown below:

L(θ|x) =
n

∏
i=1

G(z, µ, σ, ξ) (2)

where f is the probability density function
as in equation (2.1), which can be derived as
f = dF(x)/d(x). Therefore, the equation of max-
imum likelihood function can be shown as below:

ln[L(θ|x)] =
{

1
σ ∏n

i=1[1 + ξ(
xi−µ

σ )]−
1
ξ−1 × exp[−∏n

i=1[1 + ξ(
xi−µ

σ )]−
1
ξ ], ξ 6= 0

1
σ ∏n

i=1 exp(− xi−µ
σ )−exp(− xi−µ

σ ), ξ = 0
(3)

2.3. Penalized MLE (PMLE) / Generalized MLE

The penalized maximum likelihood or called the gener-
alized maximum likelihood is an alternative method of
standard MLE to avoid poor performance in small sample
sizes. In this study, we consider two approaches of the
panelized maximum likelihood estimators from [4] and [9].
These two methods introduced the penalty function to the
standard method of the MLE.

2.3.1. PMLE 1

From [4], the penalized likelihood function is defined as:

LPMLE1(µ, σ, ξ) = L(µ, σ, ξ)× P(ξ) (4)

where L(µ, σ, ξ) is the standard likelihood function of MLE
from Eq. 3 and P(ξ) is the penalty function for a range of
non-negative value of α and λ which shown as below:

(ξ) =


1, ξ ≤ 0

exp(−λ( 1
1−ξ − 1)α), 0 < ξ < 1

0, ξ ≥ 1
(5)

From [4], the suitable value of α and λ is equal to 1, there-
fore it can overcome the problem of small sample sizes in

the MLE. A simulation study which conducted in [8] with
a sample size of n=25 showed that PMLE almost better in
both bias and root mean square with respect to probabilty
weight moment.

2.3.2. PMLE 2

From [9], the penalty function defined as:

π(x) = (0.5 + ξ)p−1(0.5− ξ)q−1/B(p, q) (6)

The value of ξ is in the range of [-0.5, 0.5], with p=6 and
q=9 where B(p, q) = (Γ(p)Γ(q))/Γ(p + q). It has the mean
of ξ = -0.1 and the variance is 0.015. This distribution is
well behaved for small sample size since it has the smallest
bias and smallest RMSE compare to other method [9].

2.4. Sandwich Estimator

The aforementioned methods maximize the likelihood func-
tion independently at each site that their statistical assump-
tion of inter-dependency between sites being violated [7].
From [5], the estimates based on independence assumption
said to misspecify if ignore the dependence. By using the
sandwich estimator, the parameter values obtained inde-
pendently are unchanged but the assymptotic variances
will be corrected by using the following function:
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Table 1. Information of each site.

Sites 1 2 3 4 5
Sites Bonor Kalumpun Kemabong Pangi Dam Sook

No. of Years 33 33 33 27 33
Maximum Observation 135.0 157.5 115.0 156.0 144.0

Var(θ̂) = [I(θ̂)]−1 J(θ̂)[I(θ̂)]−1 (7)

where [I(θ̂)] = −E52 l(θ̂) is the observed Fisher Infor-
mation matrix that also defined as the second derivative
of the log likelihood obtained from the Eq. 4 and 6. E52

is the function of the expected value of hessian. [I(θ̂)]−1,
the inverse function of this matrix will produce the covari-
ance matrix under the independent assumption [7]. While
J(θ̂) is the partial derivative of the log penalized likelihood
function which appproximating the error in likelihood es-
timation. The score function for θ is the gradient, 5 of
the log penalized likelihood, l(θ̂) with respect to θ can be
obtained by the following function [7]:

J(θ̂) =
n

∑
i=1
5l(θ̂)i5 l(θ̂)T

i (8)

2.5. Return Level

Let p be the probability of the extreme event, estimation of
extreme quantiles of the annual maximum distribution are
obbtained by inverting Eq. 1:

Zp =

{
µ− σ

ξ (log(1− p)−ξ − 1), ξ 6= 0
µ− σlog[−log(1− p)], ξ = 0

(9)

Zp is the return level with associated with the return period
1/p, the level Zp is expected to exceed on average once
every 1/p years [4].

3. Case Study: An Application to Rainfall Data in
Sabah

This section discusses the results of modeling an annual
maximum rainfall data of 5 selected sites using the method
in Section 2. The 5 selected sites are Bonor, Kalampun,
Kemabong, Pangi Dam and Sook in Sabah, Malaysia. These
data are obtained from Hydrology and Survey Division un-
der Department of Irrigation and Drainage, Sabah. Table 1
shows the number of years (n) and the maximum observa-
tion for the period of time at each site.

We fitted the generalized extreme value (GEV) distribu-
tion independently to each site. The recorded observation
data (number of years) for these 5 sites all below 50, which
consider as a small sample sizes. Since there are small sam-
ple issues by using MLE method [10], therefore, we applied

the alternative method which is the penalty function of
standard MLE to estimate the GEV parameters estimation
which are the penalized maximum likelihood estimation,
PMLE1 and PMLE2. Both of these PMLE methods well
behaved in small sample sizes compared to MLE. When
the data are modeled independently and ignored the de-
pendency between sites, the model assumptions have been
violated, and it may lead to wrong conclusion [7]. The
sandwich estimator is then applied to correct the variances.
The method still produced the similar value of parameter
estimation, but with some modifications required on the
standard error for the spatial extreme data. Table 2 shows
the results of GEV parameter estimates and the standard
error which were modified by using sandwich estimator.

This result is useful to predict the return value of an
extreme rainfall of these 5 selected sites. The return value
will be calculated by using p=0.01(100-years return level
estimate). Table 3 shows the corresponding return value
estimation for the 5 selected sites. Upon comparing to the
annual maximum data in Table 1, for both of the PMLE, site
3 and site 5 are expected to exceed the annual maximum
observations on average once in every 100-year.

4. Conclusions

When modelling the spatial annual maximum rainfall data
by using the generalized extreme value (GEV) distribu-
tion independently, the model assumption been violated
since the dependency between sites been ignored. To solve
this problem, an alernative method of multivariate extreme
value distribution which is sandwich estimator approahes
for model the spatial extreme event was applied. Most of
the method from multivariate extreme value distributon
may creates high dimensionality difficulties for both model
validation and computation. Therefore, sandwich estima-
tor can be used to refrain the high dimensional validation
and computation. In conclusion, the sandwich estimator is
appropriate to model the spatial extreme data to capture
the dependency data, which is also an appropriate method
to model the spatial extreme rainfall data in this study.
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Table 2. Standard Error modified using Sandwich Estimator.

PMLE1 PMLE2
Parameter Estimations Standard error (sandwich) Parameter Estimations Standard error (sandwich)

µ1 91.91 8.93 µ1 91.63 8.26
σ1 26.56 3.29 σ1 26.20 3.03
ξ1 -0.59 0.23 ξ1 -0.57 0.23
µ2 84.34 6.94 µ2 84.10 6.79
σ2 31.50 3.12 σ2 31.25 2.95
ξ2 -0.35 0.34 ξ2 -0.34 0.35
µ3 65.81 3.34 µ3 65.60 3.36
σ3 15.28 2.19 σ3 15.12 2.09
ξ3 -0.05 4.76 ξ3 -0.02 10.19
µ4 78.94 4.07 µ4 78.82 4.11
σ4 17.74 2.06 σ4 17.66 2.03
ξ4 -0.09 1.05 ξ4 -0.08 1.28
µ5 95.74 5.49 µ5 95.15 5.30
σ5 22.27 3.85 σ5 21.66 3.43
ξ5 -0.28 1.20 ξ5 -0.24 1.47

Table 3. Return Value Estimation.

Sites Bonor Kalumpun Kemabong Pangi Dam Sook
Return PMLE1 134.184 156.328 128.832 146.342 152.863
value PMLE2 134.267 156.870 131.551 147.429 155.908

Malaysia Sabah for financially supporting this study under
the UMSGreat Grant (GUG0209-1/2018).
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