Muh Sarkowi This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Rahmat Catur Wibowo1

1Geophysical Engineering, Universitas Lampung, Sumantri Brojonegoro Street No.1, 35145, Lampung, Indonesia


Received: April 5, 2021
Accepted: July 29, 2021
Publication Date: August 29, 2021

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  


The Bac-Man gravity modeling was carried out to describe the geological structures that control the geothermal system and estimate the area of the geothermal reservoir. A total of 125 data points were used to produce a complete Bouguer anomaly map of the area. The gravity data are separated into regional and residual components to enhance the structural features of the sedimentary and basement rocks in the study area. Gravity data were analyzed using gradient interpretation techniques for edge detection, such as vertical descent. To perform three-dimensional (3-D) modeling, a 5  5 km volume and a depth of 2.5 km were selected. This study presents the interpretation of various gravity anomaly maps and 3-D inversion models. The interpretation of the vertical derivative of the gravity data indicates the presence of a low gradient anomaly. The anomaly map is used to identify several faults or intrusions compared to the faults or intrusions that are mapped. The 3-D model reveals that there are 3 geothermal reservoirs, and the average block density value is 2.25 g/cc. These reservoirs are spread over the Southern area (Cawayan and Tanawon Sector), East area (Boton Sector), and Palayan-Inang Maharang area. Faults or rock intrusions are the limiting factors for the three existing reservoirs. The results obtained from this study will lead to a better understanding of the geothermal system in the study area, in particular, reservoir boundaries, and assist in future geothermal exploration.

Keywords: Bac-Man field, Gravity, Modeling, Reservoir, Geothermal


  1. [1] S. Zarrouk and K. Mclean. Geothermal Well Test Analysis. 2019. DOI: 10.1016/c2017-0-02723-4.
  2. [2] J. R. Africa. 1D Inversion of MT and TEM Data With Application of Soundings From Krýsuvík , Sw-Iceland and a Review of MT/TEM Data From Bac-Man Geothermal Project , Central Philippines. Tech. rep. 5. Reykjavik, 2013, 33.
  3. [3] R. J. Tugawin, D. M. Rigor, C. E. F. Los Baños, and D. B. Layugan, (2015) “Resistivity Model Based on 2D Inversion of Magnetotelluric Sounding Data in Bacon- Manito, Southern Luzon, Philippines" ProceedingsWorld Geothermal Congress 2015 (April): 1–6.
  4. [4] J. J. C. Austria. Production Capacity Assessment of the Bacon-Manito Geothermal Reservoir, Philippines. Tech. rep. 2. Department of Mechanical and Industrial Engineering, University of Iceland, 2008, 89.
  5. [5] T. A. Abiye and Tigistu Haile, (2008) “Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift" Geothermics 37(6): 586–596. DOI: 10.1016/j. geothermics.2008.06.004.
  6. [6] S. Soengkono. “Deep interpretation of gravity and airborne magnetic data of the Central Taupo volcanic zone”. In: New Zealand Geothermal Workshop Proceedings (21-23 November 2011). 1955. 2011.
  7. [7] P. Represas, F. A. Monteiro Santos, J. Ribeiro, J. A. Ribeiro, E. P. Almeida, R. Gonçalves, M. Moreira, and L. A. Mendes-Victor, (2013) “Interpretation of gravity data to delineate structural features connected to low-temperature geothermal resources at Northeastern Portugal" Journal of Applied Geophysics 92: 30–38. DOI: 10.1016/j.jappgeo.2013.02.011.
  8. [8] W. J. Hinze, R. R. B. von Frese, and A. Saad. Gravity and magnetic exploration: principles, practices and exploration. Cambridge University Press, 2013, 512.
  9. [9] J. J. T. Dimabayao, M. C. Rowe, and S. Barker, (2019) “Stable isotope systematics of fluids and epidote in the Bacon-Manito Geothermal Field, Philippines: Indicators of fluid origin and evolution" Geothermics 80: 31–43. DOI: 10.1016/j.geothermics.2019.02.009.
  10. [10] A. Reyes, M. Delfin, and E. Bueza. “PETROLOGICAL IDENTIFICATION OF MULTIPLE HEAT SOURCES IN THE BACON-MANITO GEOTHERMAL SYSTEM, TIIE PHILIPPINES”. In: Proceedings World Geothermal Congress. Florence, 1995, 713–717.
  11. [11] D. B. Layugan, D. M. Rigor, N. A. Apuada, R. E. R. Olivar, M. City, and S. Leyte. “Magnetotelluric ( MT) Resistivity Surveys in Various Geothermal Systems in Central Philippines”. In: Proceedings World Geothermal Congress. 2000. April. Antalya, 2005, 24–29.
  12. [12] J. L. Monasterial. Microgravity Survey in 2009-2010 Around Bacman Geothermal Field, Philippines - Gravity Corrections and Interpretations. Tech. rep. 23. Reykjavik, 2015, 22.
  13. [13] B. H.Wellenhof and H. Moritz. Physical Geodesy. Austria: SpringerWienNewYork, 2005, 412. arXiv: arXiv:1011.1669v3.
  14. [14] D. Nagy, (1966) “The prism method for terrain corrections using digital computers" Pure and Applied Geophysics PAGEOPH 63(1): 31–39. DOI: 10.1007/BF00875156.
  15. [15] M. Kane, (1962) “A Comprehensive System of Terrain Corrections Using A Digital Computer" GEOPHYSICS XXVII(4): 455–462.
  16. [16] Ina-Geoportal. DEM Data.
  17. [17] B. K. Bhattacharyya and L. K. Leu, (1977) “Spectral Analysis of Gravity and Magnetic Anomalies Due To Rectangular Prismatic Bodies." Geophysics 42(1): 41–50. DOI: 10.1190/1.1440712.
  18. [18] G. K. Ghosh and C. L. Singh, (2014) “Spectral analysis and Euler deconvolution technique of gravity data to decipher the basement depth in the Dehradun-Badrinath area" Journal of the Geological Society of India 83(5):501–512. DOI: 10.1007/s12594-014-0077-3.
  19. [19] R. J. Blakely. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, 1995, 441. DOI: 10.1017/CBO9780511549816.
  20. [20] I. Setiadi, B. Styanta, and B. Widijono, (2010) “Delineasi cekungan sedimen sumatra selatan berdasarkan analisis data gaya berat" Jurnal Geologi dan Sumber Daya Mineral 20(April): 93–106.
  21. [21] T. A. Elkins, (1951) “The second derivative method of gravity interpretation" Geophysics 16(1): 29–50. DOI:10.1190/1.1437648.
  22. [22] Z. Zhu, X. Lei, N. Xu, D. Shao, X. Jiang, and X. Wu, (2020) “Integration of 3D geological modeling and geothermal field analysis for the evaluation of geothermal reserves in the Northwest of Beijing Plain, China"Water (Switzerland) 12(3): DOI: 10.3390/w12030638.
  23. [23] E. Januari, D. Santoso, and A. F. M. Ulum. “Gravity Survey in Pandan Mountain - East Java , Indonesia Gravity Survey in Pandan Mountain – East Java, Indonesia”. In: IOP Conf. Series: Journal of Physics: Conf. Series. 2019, 11. DOI: 10.1088/1742-6596/1204/1/012006.
  24. [24] A. Adhi, W. Suryanto, and M. Sarkowi, (2018) “GRAV3D Validation using Generalized Cross- Validation ( GCV ) Algorithm by Lower Bounds Approach for 3D Gravity Data Inversion" Scientific Journal of Informatics 5(2): 271–277.
  25. [25] D. Plouff, (1976) “Gravity and Magnetic Fields of Polygonal Prisms and Application to Magnetic Terrain Corrections" GEOPHYSICS 41(4): 727–741.
  26. [26] W. Telford, L. P. Geldart, and R. Sheriff. Applied Geophysics: Second Edition. Cambridge University Press, 1990, 760.
  27. [27] S. Ramos and B. Santos. “Updated Hydrogeological Model of the Bacon-Manito Geothermal Field, Philippines”. In: Proceedings of 37th Stanford Geothermal Workshop. California, 2012, 1–4.