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We present an SIRD epidemic modelling for COVID-19 outbreak in the ASEAN member countries. The
occurrence of a second wave in the region adds complexity to the parameter estimation of the SIRD model.
In this case, a standard genetic algorithm cannot fully capture the dynamic transmission of the pandemic.
We therefore introduce a genetic partial fitting algorithm (GPFA) of seven-day intervals. We show that our
method outperforms the standard algorithm with a significant reduction in the Root Mean Square Error (RMSE)
value. We also extend our study to produce a real-time estimation of the effective reproduction number with a
confidence interval to incorporate uncertainties in the model.
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1. Introduction

The global pandemic of novel coronavirus (COVID-19),
starting in Wuhan city, China, at the beginning of December
2019, has affected countries all over the world. The most
affected ones, in terms of positive cases, were the US, Spain,
Italy, Germany, France, China, Iran, and UK, with the US
currently having the highest total death toll [1]. There are
several different symptoms of COVID-19, with the most
common ones are fever, cough, and shortness of breath.
Severe symptoms include respiratory and organ failures,
which might end up in death due to the seriousness of
failures and limited capacity of health facilities [2, 3].

The pandemic has been followed by dramatic policies
such as lockdown and quarantines, which have been ap-
plied to reduce the spread of the epidemic. Globally, the
number of infected people has reached more than one mil-
lion in less than six months, and the positive cases are still
growing daily. The rapid growth made this novel coron-

avirus outbreak immediately receive serious attention from
researchers in different fields worldwide.

Mathematical and statistical modeling tools provide ad-
ditional resources in facing the epidemic [4]. Emerging
studies related to the outbreak have arisen with various
models to predict the spread of the virus. Some of them
are heuristic due to the limited infection data available, i.e.,
exponential [5] or logistic [6] model. However, the model
parameters do not have an adequate physical interpretation
and are not used for a long-term prediction. Epidemic com-
partmental models have been developed based on physical
parameters, where the population is divided into smaller
groups based on the infection status, such as susceptible
(S), infected (I), recovered (R), and death (D). The math-
ematical model representing the population’s dynamic is
then called a SIRD model [7].

A comparative assessment of COVID-19 on the dynamic
of the epidemic spreading in mainland China, Italy, and
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France, has been done by Fanelli and Piazza [8]. It can be
used to observe reported deaths that happen severely in the
COVID-19 pandemic and other features such as the num-
ber of infected and recovery during the pandemic period.
Fanelli and Piazza pointed out that the initial values of the
reported and infected cases tend to be underestimated, so
that they need to be floating and optimized.

In this paper, the SIRD model is revisited for the COVID-
19 epidemic and its forecasting. The study will involve data
set from a well-known regional group of nations, the As-
sociation of Southeast Asian Nations (ASEAN). Due to the
uncertainty of the COVID-19 epidemic and its irregularity
in some different countries, obtaining a more reliable un-
derstanding of the outbreak’s spread using the SIRD model
becomes a challenge [9]. Initial values of the SIRD model
might be estimated using an artificial intelligence approach,
i.e., a genetic algorithm. There are several advantages of
the genetic algorithm to conventional optimization algo-
rithms. Two of the most notable ones are its capacity to
deal with complicated problems and its parallelism [10].
A careful fitting should be done in the COVID-19 SIRD
model so that the government could commence a COVID-
19 policy-making properly. Parameter estimation using a
standard genetic algorithm can be performed precisely if
the data set is commonly assumed to be under the SIRD
curve.

However, the occurrence of a second wave makes the
SIRD model may not fit the data precisely due to the pres-
ence of the resurgence (second wave) in the data [11].
Hence, the current modeling method of the SIRD curve
produces a limitation, and the model’s prediction could not
represent the actual data [12]. The misfitting of the SIRD
model can possibly lead policymakers to a wrong settle-
ment. Xie et al. improved a Genetic Algorithm reconstruc-
tion on a time series model by partitioning the observation
into independent piecewise intervals for accuracy boosting
of the prediction [13]. Other works from Baragona et al. to
reconstruct the Genetic Algorithm on time series model also
produced satisfactory results [14], where they divided the
auto-regressive model into N-independent parts (regimes)
by setting up a certain threshold using the Genetic Algo-
rithm. Yet, the existing modification of the Genetic Algo-
rithm cannot be implemented directly to the SIRD model
due to its independent properties.

According to the WHO, the incubation phase of COVID-
19, which is the interval between susceptibility to the virus
and symptom onset, is on average 5-6 days but can be as
long as 14 days [15]. So, in the incubation period, the data
from yesterday certainly perform an effect, which is depen-
dent on today’s data. Therefore, in this study, we introduce

our novel approach, the genetic partial fitting algorithm
(GPFA), on the COVID-19 data set fitting process. We di-
vided our actual data into k overlapping sub-intervals to fit
our model in the data set. The overlapping sub-intervals
will produce a 4-tuple piecewise parameter of the SIRD
model that is useful to measure the reproduction number.

There are two advantages to using GPFA as a fitting
algorithm. Firstly, we can offer a more fitted result to the
COVID-19 data set containing second wave appearances.
Secondly, some measures related to the SIRD model, such
as the case fatality rate and reproduction number, can be
estimated in real-time.

This paper is organized as follows. In Sections 2 and
3, we discuss the governing SIRD model and parameter
estimations for the model using a genetic algorithm. Data
set description and some measures are provided in Section
4 and 5, respectively. Simulations, analysis, and further dis-
cussions of the epidemic in the aforementioned countries
are presented in Section 6. Finally, we give the conclusion
of our work in Section 7.

2. The SIRD Model

In this paper, the disease transmission is modeled by the
following set of ordinary differential equations:

dS(t)
dt

= −rS(t)I(t),

dI(t)
dt

= rS(t)I(t)− (a + d)I(t),

dR(t)
dt

= aI(t),

dD(t)
dt

= dI(t),

(1)

under an assumption that the population is grouped into
four compartments given by susceptible individuals (S)
which are healthy but not immune to the disease, infected
individuals (I) that can infect others, recovered individ-
uals (R) after being infected, and death individuals due
to the viral infection (D). The system in Eq. 1 is comple-
mented with initial conditions [S(t0), I(t0), R(t0), D(t0)] =

[S0, I0, R0, D0]. An initial time t0 is equivalent to the first
day when the virus began to spread in the country. Pa-
rameters r, a, and d in the system represent transmission,
recovery, and death rates, respectively. The parameters r, a,
and d will be estimated using our proposed method, a ge-
netic partial fitting algorithm (GPFA) based on the available
COVID-19 data from [16]. The value of S0 is also optimized
since there is no information about how many healthy peo-
ple could be infected initially. We extend our analysis of
the SIRD model into case fatality rate and reproduction
number in Section 5 and 6.
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3. Genetic Partial Fitting Algorithm as Parameter
Estimation Techniques

A genetic algorithm is a meta-heuristic searching that is in-
spired by Charles Darwin’s ideas of natural evolution. This
algorithm exhibits rules of natural selection where the most
eligible individuals are chosen for breeding the offspring
of the next generation. Genetic algorithms have four basic
steps: an initial population generation, a selection process,
a crossover mechanism, and a mutation scheme [17], as
depicted in Fig. 1.

The process begins with a generated set of values, called
an initial population with N individuals (or chromosomes),
X = (X1, X2, . . . , XN) where

Xi = (S0, r, a, d)i, i = 1, 2, ...N. (2)

Each individual has four parameters (S0, r, a, d) that can be
considered as one strain of chromosome. We generated 250
(N = 250) types of chromosomes for each country as our
initial population. Before entering the selection process,
we should determine our fitness value. We used the Root
Mean Square Error (RMSE) measurement to find the fitness
value in the genetic algorithm. Henceforth, our objective
is to minimize the RMSE by systematically choosing one
strain of chromosomes from within the set of the initial
population.

The RMSE is calculated using Eq. 3,

RMSE(A, P) = min
{S0,r,a,d}

√
1
n

n

∑
i
(Ai − Pi)2 (3)

where n is the number of observed data, Ai ∈
{I(t), R(t), D(t)} is the observed data, and Pi ∈
{ Î(t), R̂(t), D̂(t)} is the predicted (simulated) data using
the SIRD model. To make our simulation easier, we pre-
fer to maximize RMSE(A, P)−1 instead of minimizing
RMSE(A, P). In the second step, the selection process, we
used the roulette system to determine the chromosome that
corresponds with the smallest fitness value. The selection
process by roulette algorithm is described in Table 1. The
roulette system will provide a high probability of selecting
the chromosome that has the smallest fitness value. Thus,
the roulette system will decide the fittest chromosome for
the next generation.

In the crossover mechanism, we design a weighted arith-
metic summation to create the offspring of the next genera-
tion Xchild as follows,

Xchild = (1− α)Xparent1 + (α)Xparent2

where α is a constant crossover rate, and Xparent1 and
Xparent2 are chosen randomly by conditioning α on U[0, 1].

Table 1. Roulette Algorithm.

No Roulette Algorithm
1. Calculate RMSEi(A, P)−1 for every Xi ∈ X.

2. Define wi =
RMSEi(A, P)−1

∑i RMSEi(A, P)−1 , resulting 0 < wi < 1.

3. Create roulette’s partition, πi, based on wi.
4. Generate s ∼ U[0, 1].
5. If s is located in πi, for certain i, save the value of Xi.
6. Repeat step 4 and 5 up to N times.

In the last step, we design the mutation scheme (Xi)mutated

as an addition or subtraction of the value in a chromosome
Xi in Eq. 2 with a normal distributed random noise z. This
scheme can be described in a mathematical formula as fol-
lows,

(Xi)mutated = Xi + z (4)

where z ∼ N(0, X). The chromosomes will be mutated
fortuitously (see Eq. 4) based on a mutation rate, θ, de-
pending on U[0, 1]. The genetic algorithm terminates if the
maximum iteration is reached or the fitness value is already
converged.

In this paper, we propose a modification of the standard
genetic algorithm into a genetic partial fitting algorithm
(GPFA) that employs piecewise fitting every seven days.
Thus, our objective function evolves to a modified RMSE
based on the one in Eq. 3 and is defined as

RMSEm(A, P) = min
{S0(k),r(k),a(k),d(k)}

√√√√1
7

k+6

∑
i=k

(Ai(k)− Pi(k))2

(5)

where k = 0, 1, 2, . . . , N− 6 denotes the k-th piecewise data
set containing seven reported COVID-19 data, and N de-
notes the total entry of data. Seven points of data (i.e., seven
days) represent the average incubation period according to
World Health Organization (WHO) [1].

4. Some Measures on Epidemic Model

We use two measures to describe the severity of the epi-
demic: case fatality rate (CFR) and effective reproduction
number (). Each of the measures is explained in the follow-
ing. Case fatality rate (CFR) is obtained by dividing the last
data of death individual with a total infected individual.
The value is calculated as [18]

CFR =
1
c

D(n)
I(n)

, (6)

where n and c indicate the index for the latest data and the
correction factor. We chose the value of c in Eq. 6 under the
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Fig. 1. General Scheme of Genetic Algorithm.

assumption of under-reported cases are minimized. Thus,
the value of c is 1.

The time-varying effective reproduction number is
a measure of the outbreak’s transmission describing
the continuation of the transmission after control Non-
Pharmaceutical Interventions (NPI) [19]. A quantitative
evaluation of efficacy of the measure by using , is applied
by controlling and reducing to less than one. Based on
[20] and the SIRD model in Eq. 1, where a and d refer to
the recovery rate and death rate, respectively. The rate of
infection can be obtained as follows,

dI(t)
dt

= rS(t)I(t)− (a + d)I(t) (7)

dI(t)
dt

= (a + d)(−1)I(t), (8)

where

Rt =
S(t)
N R0, (9)

and
R0 = S0

(
r

a + d

)
. (10)

R0 is a basic reproduction number of the outbreak. It is
defined as the average number of increasing cases caused
by an infected individual during their infectious period in a
susceptible and uninfected population. It should be noted
thatR0 is estimated before the control intervention while
is estimated after. Comparing the two measures,R0 and ,
the effectiveness of control intervention is determined [21].

5. ASEAN COVID-19 Data Set

The data set used in this paper is obtained from COVID-19
Data Repository by the Center for Systems Science and En-
gineering (CSSE) at Johns Hopkins University [16], which is
considered as a leading data source [22], from 1 April 2020
to 30 September 2020. The data set consists of daily con-
firmed cases, recovered cases, and death cases. We collect
the data from ten countries of the ASEAN (The Association
of Southeast Asian Nations) minus Timor Leste.

The countries are classified as high, mid, and low cat-
egories based on the total number of confirmed cases on
30 September 2020 [16]. The high-cases category is the
countries with the three highest number of confirmed cases.
The next four countries are mid-cases, while the last three
countries are low-cases. The daily confirmed cases and
the total number of death are depicted in Figs. 2a, 3a, 4a,
and Fig. 5 for all three clusters respectively. In high-cases
clusters (see Fig. 2), both the Philippines and Indonesia,
show monotone increasing numbers of daily confirmed
cases. The first waves of infection in both countries seem
not yet finished, although after a quite long period. Sin-
gapore is one of the countries that has successfully dealt
with the outbreak and has passed its first wave of infection.
The number of cases in Singapore has increased rapidly
from April to June due to the massive tests conducted by
Singapore. In July and afterward, Singapore succeeded
in suppressing the increase of daily confirmed cases, and
accordingly, the daily recovered cases follow the trend.

Myanmar, Malaysia, Thailand, and Vietnam, are clus-
tered as mid cases. In Fig. 3, confirmed cases in Myanmar
increased significantly in April and recorded the first re-
covered case since impacted by Coronavirus on 8 April.
Then, Myanmar survived nearly one month without any
local transmissions from mid-July to mid-August. Even
with that achievement, Myanmar had to suffer the second
wave that started on 16 August, which causes dramatic in-
creases in the number of daily confirmed cases in Myanmar.
In Malaysia, the Coronavirus transmission grew insignifi-
cantly, thanks to the Movement Control Order (MCO) ex-
tension by the government on 10 April [23]. Malaysia was
able to manage the spread of Coronavirus effectively. How-
ever, at the end of September 2020, Malaysia is facing the
new challenge of the incoming second wave of infection
without a significant increase in Coronavirus infection. In
Thailand, the government suspended all commercial inter-
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(a) Daily confirmed-high

(b) Daily recovered-high

Fig. 2. High-Cases Data Set
PHL = Philippines, IDN = Indonesia, SGP = Singapore.

(a) Daily confirmed-mid

(b) Daily recovered-mid

Fig. 3. Mid-Cases Data Set
MMR = Myanmar, MAL = Malaysia, THA = Thailand,
VNM = Vietnam.

(a) Daily confirmed-low

(b) Daily recovered-low

Fig. 4. Low-Cases Data Set
KHM = Cambodia, BRN = Brunei Darussalam, LAO =
Laos.

national flights and implemented lockdown measures from
4 April. The decision successfully diminished the increase
in infection in Thailand. Even in mid-May, the infection
number had fallen close enough to zero. But recognizing
a sharp rise in infection at the end of September, Malaysia
should prepare for a second wave possibility in a short time.
In Vietnam, the infection rate from April to June is very
low. But then, at the end of July, Vietnam was impacted
by the second wave of infection. It happened due to a new
Coronavirus strain that led to high infection rates.

Next, Cambodia, Brunei Darussalam, and Laos clus-
tered as low-cases (see Fig. 4). Despite limited health in-
frastructure, Coronavirus in Cambodia is most certainly
considered as undercount [24]. The keys to pandemic man-
agement in Cambodia lie in strong surveillance mecha-
nisms, including border controls, real-time databases and
risk assessments, rapid response teams, massive epidemic
training, enhancing laboratory capacity, and effective com-
munications [25]. Brunei Darussalam has been positioned
as a country that successfully managed the spread of the
Coronavirus together with Singapore and Taiwan, despite
its lack of experience in handling such a pandemic. While
taking advantage of its wealth, a high human development
index, and good health facilities, the country has faced the
possibility of viral transmission. Consequently, the country
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has sustainable programs of pandemic management: huge
funding support, massive surveillance including border
control, tracing and PCR testing, and transparent and re-
sponsive public communication on a daily basis [26]. Like
Cambodia and Brunei, Laos also has the typical policies in
handling the Coronavirus spread so that the country less
suffered from the disease [27].

The cumulative number of death caused by the Coro-
navirus for the three countries are shown by Fig. 5. Only
Singapore has no increase in the cumulative number of
death for the high-cases cluster. Unlike Malaysia, Thailand,
and Vietnam in the mid-cases cluster, Myanmar faced an
increasing number of deaths as the country is still unable
to control the spread of the disease and lack effective ac-
tions implemented. The last cluster, low-cases, consists
of countries with almost countless and even zero death
reported. The countries are Cambodia with zero death re-
ported, Brunei Darussalam with a low constant number of
death, and last Laos with very low death cases.

Fig. 5. ASEAN COVID-19 Cumulative Death Cases

A measure to determine the hazard level of the pan-
demic based on the death class of an individual is the case
fatality rate (CFR). Table 2 shows the CFR of all countries
observed in this paper. The countries considered to be the
most affected by Coronavirus, in term of the number of in-
fected individuals, Indonesia and the Philippines, have the
CFR less than 2%-4% by September, 30th, 2020. This value
is much less than the early period which was around 6%
as reported in [28]. Myanmar has a higher CFR value and
becomes one of the most affected by the outbreak. Cam-
bodia and Laos have zero death since an early stage of the
pandemic, so that the CFR is also zero. Due to the high
number of infections but low level of death, Singapore has
a very low value of CFR by September, 30th, 2020. There-
fore, Singapore has been considered a successful country
for controlling the outbreak. Other ASEAN countries listed
in Table 2 have CFR around 1%-3% and the countries are
considered to have a low level of CFR.

Table 2. ASEAN Countries COVID-19 Prevention
Schemes
FW = First Wave, SW = Second Wave

Nation Status CFR at
30/09/2020

Philippines FW Ongoing [29] 0.02125
Indonesia FW Ongoing [30] 0.04759
Singapore FW Passed [31] 0.00047
Myanmar FW Ongoing [32] 0.07626
Malaysia SW Ongoing [33] 0.01346
Thailand SW Possibility [34] 0.01716
Vietnam SW Passed [35] 0.03349
Cambodia SW Passed [36] 0
Brunei FW Passed [37] 0.02069
Laos FW Passed [38] 0

6. Simulation Results and Discussion

Data set of each country have been presented and elabo-
rated in the previous section. In this section, based on the
data set observed, we present the dynamic of the outbreak
spread using our novel approach, general partial fitting
algorithm (GPFA), especially dealing with the presence of
second wave phenomena.

6.1. Genetic Partial Fitting Algorithm (GPFA) on
ASEAN COVID-19 Data Set

The genetic partial fitting algorithm (GPFA) is implemented
to the data set following the steps presented in Section 3.
The COVID-19 data set is fitted every seven overlapped
days with daily increments. To manage the overlapped
fit results, calculations of the mean of the data are applied
to the same timestamp. Resulting, the GPFA can follow
the trend of COVID-19’s data points. The GPFA can well-
detect turning points on the data set fluctuation using the
partial fitting. The ability of GPFA in dealing with the
fluctuations is considered as an advantage of the algorithm
in fitting the second wave phenomena. In our finding, the
genetic partial fitting algorithm (GPFA) shows excellent
simulation outcomes for both, the first wave and second
wave phenomena.

Fig. 6 provides a visualization concerning the GPFA on
the two most COVID-19 cases in ASEAN countries, Indone-
sia and the Philippines, according to the Center for Strategic
and International Studies (CSIS), [39]. The dot-dashed lines
can follow the turning points perfectly compared to the
solid line representing the standard genetic algorithm (GA).

Complete visualizations for each country are provided
in Appendix A. We present the Root Mean Square Error
(RMSE) of the GPFA in Table 3 to analyze and compare
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Fig. 6. The GPFA vs Common GA on Indonesia and
Philippines COVID-19 Dataset

the significance of GPFA and standard GA. Note, a higher
RMSE in value does not always mean that our algorithm
worked poorly. However, it can also explain how big the
value in the data set we chose. On the other hand, smaller
RMSE implies that the fitting process has efficiently oper-
ated. Table 3 shows that the GPFA can significantly reduce
the RMSE for more than 90%. The piecewise approach in
GPFA can be more beneficial if the data set is more volatile
and complex and is set up for short-term forecasting in
each piecewise, for example, only for a 7-day piecewise or
less. A higher accuracy will be obtained as a shorter period
is used.

6.2. 4-Tuple Parameter Series Plot

The capability of our GPFA to capture the movement of
COVID-19 reported cases has been shown in the previous
section. Better fitting results using GPFA compared to the
standard GA are depicted in Fig. 6. The figure shows the
fluctuation of COVID-19 reported cases from the end of
April/July 2020 to September 2020. In this section, the pa-
rameters, namely a 4-tuple parameter, which correspond
to GPFA for each k-th piecewise, are observed (see Eq.
5). The value of the 4-tuple parameter in each piecewise,
(S0(k), r(k), a(k), d(k)) will be used to estimate the value of
basic reproduction number in the next section.

The plots of parameters are represented by two coun-
tries, Indonesia and the Philippines, and are depicted in
Figs. 7 and 8. Complete results are presented in Appendix
B. In every piecewise data, the parameter S0 (i.e., initial
susceptible population) provides a wider confidence in-
terval than the others. It illustrates the sensitiveness of
S0 amongst the other parameters. A small change in the
data set can significantly change the estimated value of
S0. Other parameters (r,a,d) also move according to the
fluctuation of the ASEAN COVID-19 data set.

Fig. 7. Parameter Plot on Indonesia Data Set

Fig. 8. Parameter Plot on Philippines Data Set

6.3. Real Time Estimation of the Effective Reproduction
Number

In this part, we performed the GPFA method to investigate
viral transmission in the ASEAN data set. Based on the
4-tuple parameter obtained using the GPFA method, those
are transmission rate r(k), recovery rate a(k), and death
rate d(k), are interpreted the previous section. The value
of effective reproduction number Rt, as the measure of
viral transmission, is determined using Eq. 9. The value of
parameters (S0(k), r(k), a(k), d(k)) are used to estimate the
value of basic reproduction number as described in Eq. 10
of k-th piecewise,

(k) =
S(t)
N
R0(k) (11)

R0(k) = S0(k)
(

r(k)
a(k) + d(k)

)
. (12)

S0(k) is the value of an estimated susceptible of the k-th
interval, which is updated by a one-day shifting of the next
seven-day overlapping interval. The transmission rate r(k),
recovery rate a(k), and death rate d(k), are interpreted the
rates for each k-th piecewise interval. The rates change over
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Table 3. Comparison of RMSE value between Common Genetic Algorithm and GPFA

Abbreviation Nation RMSE RMSEm Reduction (%)
PHL Philippines 12137.88 2794.30 76.98
IDN Indonesia 4795.61 1436.56 70.04
SGP Singapore 4803.15 93.25 98.06

MMR Myanmar 636.94 23.35 96.33
MAL Malaysia 269.57 20.89 92.25
THA Thailand 120.01 9.41 92.16
VNM Vietnam 130.39 5.02 96.15
KHM Cambodia 52.89 2.19 95.85
BRN Brunei 1.20 0.09 92.30
LAO Laos 2.09 0.06 97.27

time and need to be readjusted in each k-th overlapping
interval.

We visualized our simulations in graphic forms in Fig.
9 and 10. Complete simulation results for other ASEAN
countries can be seen in Appendix C. The red-colored bar
charts in both, Fig. 9 and 10, represent the reported ac-
tive (infected) cases. Simultaneously, the black-colored line
represents the estimated value of Rt. In our analysis, the
movement ofRt follows the change in the reported active
cases. Resulting, we can produce a real-time estimation
of Rt anytime when the new data is already recorded in
the system. The spiking value in the reported cases also
makes the Rt becomes higher and produces a wider gap
in the confidence interval. The confidence interval (CI)
expresses the uncertainty in any estimation results and de-
scribes an interval of values in which we can be reasonably
convinced that the true value prevails. So, wider CI implies
less knowledge about the future COVID-19 occurrence, but
it can be used as a rough guideline.

Fig. 9. The EstimatedRt Value on Indonesia Data Set

Based on our results, we have found that the changes
mentioned above at active cases trigger a significant spike
in the value ofRt. For example, in Fig. 10, there were major
value decrements in active cases at the end of July. Result-

ing, the value of Rt dropped significantly from around 2
into 1. This finding proposes a relationship between the
percentage of increase in the infected case and theRt value.
Also, we infer thatRt is sensitive to the change of infected
cases. Thus, it can be useful for identifying the severity
transmission of COVID-19 when new cases are reported.

Fig. 10. The EstimatedRt Value on Philippines Data Set

Table 4. The GPFA Estimation Result ofRt

Nation EstimatedRt at 95% CI
30 September 2020

Philippines 0.198 0.138-0.259
Indonesia 0.553 0.446-0.640
Singapore 0.249 0.224-0.275
Myanmar 3.217 3.166-3.268
Malaysia 1.894 1.849-1.938
Thailand 2.625 1.694-1.721
Vietnam 1.299 1.290-1.308

Cambodia 1.774 1.760-1.787
Brunei 0.364 0.125-0.603
Laos 1.846 1.823-1.869

In addition, it has been found that estimating based on
the SIRD model might not always work out. As shown in
Fig. 29 for Brunei, the values of increase sharply in some
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time steps, although the number of infected, recovered,
and deceased individuals are low and the growth is nearly
zero. As the spread is practically slowing down, the value
of should be low. However, based on Eq. 9 obtained by
the SIRD model, the value of may increase sharply with
relatively low growth. Therefore, we may consider that the
formula based on the SIRD model has failed in measuring
the spread of the outbreak.

7. Conclusion

This study provided the value of the case fatality rate (CFR)
to describe the severity of the pandemic based on the num-
ber of deaths, for some ASEAN countries. Indonesia and
the Philippines, are still considered to be the most affected
countries by the COVID-19 spread and the highest CFR
in ASEAN. Singapore, which has the lowest CFR with a
high number of infections, showing its success in handling
the outbreak. We have employed the parameter estimation
of the SIRD differential equation using the genetic partial
fitting algorithm (GPFA) based on the data.

We presented the performance of the GPFA that outper-
forms the standard genetic algorithm. We also show that
our method can be implemented on the COVID-19 data
set that contains second wave phenomena. It produces
smaller RMSE values than the standard genetic algorithm
(GA), with a reduction of approximately 90%. Using 4-
tuple parameters obtained from GPFA, we have observed
the behavior of the effective reproduction number, , that
illustrates the outbreak’s transmission of COVID-19. We
found that the spiking value in the data increases the value
of and provides a wider confidence interval. It is a loose
interpretation but is practical to prepare for the possibility
of the incoming viral transmission.

A. Visualization of GPFA on COVID-19 ASEAN
Data Set

Fig. 11. The GPFA vs Common GA on Brunei and Myan-
mar COVID-19 Data Set

Fig. 12. The GPFA vs Common GA on Cambodia and
Laos COVID-19 Data Set

Fig. 13. The GPFA vs Common GA on Malaysia and Sin-
gapore COVID-19 Data Set
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Fig. 14. The GPFA vs Common GA on Thailand and Viet-
nam COVID-19 Data Set

B. Parameter Plot of GPFA on COVID-19 ASEAN
Data Set

Fig. 15. Parameter Plot on Singapore Data Set

Fig. 16. Parameter Plot on Myanmar Data Set

Fig. 17. Parameter Plot on Malaysia Data Set

Fig. 18. Parameter Plot on Thailand Data Set

Fig. 19. Parameter Plot on Vietnam Data Set
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Fig. 20. Parameter Plot on Cambodia Data Set

Fig. 21. Parameter Plot on Brunei Data Set

Fig. 22. Parameter Plot on Laos Data Set

C. The Estimated Value of the Effective Reproduc-
tion Number on COVID-19 ASEAN Data Set

Fig. 23. The Estimated Value ofRt on Singapore Data Set

Fig. 24. The Estimated Value ofRt on Myanmar Data Set

Fig. 25. The Estimated Value ofRt on Malaysia Data Set
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Fig. 26. The Estimated Value ofRt on Thailand Data Set

Fig. 27. The Estimated Value ofRt on Vietnam Data Set

Fig. 28. The Estimated Value ofRt on Cambodia Data Set

Fig. 29. The Estimated Value ofRt on Brunei Data Set

Fig. 30. The Estimated Value ofRt on Laos Data Set
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