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Enhancement and Analysis of ECG signals using Combined Difference
Total Variation Optimization
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An Electrocardiogram (ECG) signal representing the heart’s electrical behaviour is often corrupted by artefacts
that may prevent correct diagnosis and hence need to be reduced for better clinical assessment. The first
difference total variation that measures variation between consecutive samples of signals has been useful for
reducing artefacts from signals. However, for quasi-stationary signals having a weak signal to noise ratio,
the method’s performance is not satisfactory. In this paper, the concept of first difference total variation has
been utilized to derive combined difference total variation. The algorithm is executed to reduce simulated
noise comprising power line interference, baseline wander, and Gaussian noise added to ECG signals. The
performance is measured with standard assessment tools, and the results obtained are compared with the other
denoising models reported in the recent literature.
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1. Introduction

Electrocardiography (ECG) carries important clinical infor-
mation related to the functioning of the heart [1]. However,
the characteristics of these waves are often changed by the
noises of variable frequency and magnitude. In a few cases,
the extent of noises is relatively high that can even prevent
accurate interpretation. Therefore, the extraction of true
ECG signal from the noisy signal is the first preprocessing
stage in ECG signal processing. Noises with different inten-
sity levels viz., Power line interference (PLI), electromyo-
graphy noises, and baseline wander) were successfully
reduced to significant levels. However, electromagnetic
noises like electrode pop noise, electrosurgical noise and
instrumentation noise which shows a dynamic frequency
range is challenging [2–4]. Since the timing pattern and
characteristics of ECG signals are clinically significant, they
must be retained even after processing. The noise estima-
tion problem entails an error objective criterion specifica-

tion to be optimized in some chosen functional space [5].
Most noise suppression methods tend to damage the ECG
signals, which can be avoided by using the local signal and
the noise orthogonalization algorithm [6]. In this article, we
propose an algorithm to suppress electromagnetic noises
like white Gaussian noise along with PLI and baseline wan-
der noise from ECG signals by considering the difference
between adjacent samples of ECG signals.

Total Variation (TV) measures the average difference
between the adjacent samples of any signal. It has been
discovered that noisy signals have a large TV, i.e., the in-
tegral of the absolute gradient of the signals is high [7].
The conventional TV filtering algorithms reduce noise and
smoothes away edges to a greater or lesser degree, has been
successfully applied to the images having low signal-to-
noise ratios for inpainting, restoration, denoising, zooming,
and segmentation [8–12]. Even conventional TV algorithms
were successfully applied to ECG signals in [13, 14]. This
paper presents a novel method to reduce noises from ECG
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signals by utilizing traditional TV concept differently.
The rest of the paper is organized as follows: in Section 2,

we present the TV approach’s theoretical background. Fur-
ther in this section, utilizing the conventional method, we
derive the proposed algorithm. The result and discussion
are presented in Section 3. Finally, conclusions regarding
the presented algorithms are provided in Section 4.

2. Material and Methods

2.1. Total Variation Denoising

The TV of any real-valued function on an interval [a,b] ε R
is obtained as [15]:

TV(x) =
n

∑
i=1
|x(n)− x(n− 1)| (1)

Since the TV of any signal calculates the error between
adjacent sample points, we define this as TV1D using first
differences. ECG signals with noise are generally modeled
as

y(n) = x(n) + w(n) (2)

where y(n) is the noisy ECG signal, x(n) is the true ECG
signal and w(n) is the noise. In this paper, w(n) consist
of PLI noise, baseline wander, and white Gaussian noise.
The TV Denoising (TVD) finds an approximation x(n), for
a given input signal y(n) with smaller TV than y(n) in the
sum of square error estimate as

E(x, y) =
1
2 ∑

n
(y(n)− x(n))2 (3)

The TVD optimization problem is formulated

min {E(x, y) + λ |TV(x)|} (4)

with λ known as the regularization parameter to tune. The
idea of TV regularization is to penalize the signal’s TV,
which results in the minimization problem

x = min
{

1
2
‖y− x‖2

2 + λ ‖TV(x)‖1

}
(5)

where ‖ . ‖2 is the L2 norm and ‖ . ‖1 is the L1 norm.
Solving Eq. 5 for signals like ECG is non-trivial [15].

TV(.) is a convex regularizer used to stabilize and λ is a
regularization parameter providing the tradeoff between
fidelity of measurements and noise sensitivity and hence

it should be carefully chosen. Following the original ap-
proach by differentiating Eq. 5 wrt y(n), we can obtain the
corresponding Euler Lagrange equation that can be numer-
ically integrated with the original signal x(n) as the initial
condition [7].

Given a noisy signal = [y(0), y(1), . . . , y(n− 1)]TεRN ,
we can efficiently compute the denoised signal:

x = [x(0), x(1), . . . , x(n− 1)]TεRN (6)

defined implicitly as the solution to the minimization prob-
lem of TVD. Even though the mathematical formulation
of the TV using the first difference has been established
[7, 15, 16], we reproduce here the complete mathematical
formulation to build the necessary formulations for the
proposed TV algorithm.

2.1.1. Total Variation Denoising using Combined Differences

The TV1D of N discrete point signal x(n), 0 ≤ n ≤ N − 1
can also be represented as

‖TV1D(x))‖1 = ‖FDx‖1 (7)

The TV1D calculates the denoised signal x(n) by solving
the optimization function given by Eq. 5. With the reg-
ularization parameter as α for first differences, the same
optimization problem can be restated as:

x = min
{

1
2
‖y− x‖2

2 + α ‖FDx‖1

}
(8)

The function to be minimized in Eq. 8 is strongly convex,
and the solution x(n) to the problem exists, which is unique
for any data y(n) [15, 16].

TV1D has been successfully applied to image in for
image inpainting, restoration, denoising, zooming, and
segmentation [8–11]. Also, TV1D tends to introduce stairs
resulting in fewer flat regions within the denoised signal.
While TV1D may be appropriate for denoising piecewise
constant signals, it is not typically the most straightforward
denoising methodology for quasi-stationary ECG signals.
For such signals, a higher-order difference can preferably
be used. So, TV1D is modified to a TV based on the second
difference TV2D and is used to reduce the staircase effect
while maintaining the quality of the reconstructed signal.

Expressing the signal x(n) in terms of second difference
we have

‖TV2D(x)‖1 =
N−1

∑
n=2
|(x(n)− x(n− 1))− (x(n− 1)− x(n− 2))| =

N−1

∑
n=2
|(x(n)− 2x(n− 1)) + x(n− 2)| = ‖SDx‖1 (9)
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With the regularization parameter as β for second dif-
ferences, the same optimization function Eq. 5 can be used
to derive the signal x(n) utilizing the TV2D as :

x = min
{

1
2
‖y− x‖2

2 + β ‖FDx‖1

}
(10)

TV2D is the L1 norm of the hessian function and can con-
nect significant gaps. The TV2D approach also finds ap-
plications in the image (normal and medical) inpainting,
restoration, and destriping of remote sensing. The TV2D
method produces more connected results at the cost of blur
at the images’ edges [8–11, 17, 18]. The TV2D has also been
applied to ECG signals [19].

The combination of TV1D and TV2D, henceforth named
as (TVCD), computes the signal x(n) by solving the op-
timization function given by Eq. 5 with a combination
of Eqs. 7 and 9. The same optimization function can be
reformulated as:

x = min
{

1
2
‖y− x‖2

2 + α ‖FDx‖1 + β ‖SDx‖1

}
(11)

where α and β are regularization parameters balancing the
TV1D and TV2D, respectively.

To solve the convex non-smooth optimization problems
Eq. 11, we mostly find iterative fixed-point methods in the
literature. These methods have rather high computational
complexity [20]. Since the L1 norm is not differentiable,
minimization of the objective functions of this kind is diffi-
cult. Hence, the majorization-minimization (MM) method
is used to obtain a clean x from a noisy y signal.

2.2. Majorization-Minimization Approach

The Majorization-Minimization (MM) algorithm begins by
successively minimizing a sequence of upper bounds of
the objective function. These upper bounds are tight at the
current estimate, and each iteration monotonically drives
the objective function downhill. The MM algorithm ensures
convergence of convex and non-convex optimization when
the upper bounds approximate the objective up to a smooth
error [15, 16, 19]. If x and y εR, f and g be real valued
functions on RN then the function g majorizes the function
f at y if

• g(x) ≥ f(x) ∀ x

• g(y) = f(y)

While minimizing the objective function f iteratively, let
x(k) be the current best minimizer at the kth iteration. A

majorizing function g is constructed that majorizes f at x(k).
If x(k) minimizes g the procedure is terminated, otherwise
a new solution x(k+1) is found by minimizingg, i.e.,

f (x(k+1)) ≤ g(x(k+1)) ≤ g(x(k)) = f (x(k)) (12)
Subsequently, a new majorizing function is constructed

at x(k+1), and the steps are repeated to produce a decreas-
ing sequence of function values. To derive a majorizer for
the objective function given by Eq. 11, the property of
quadratic majorizers has been exploited. The function f(x)=
|x| has a quadratic majorizer at each xk except at xk = 0.
If xk 6= 0 then the majorizer for f(x) is given by [21]

|x| = 1
2 |xk|

x2 +
1
2
|xk| (13)

Therefore, instead of minimizing Eq. 11, the Majoriza-
tion approach solves a sequence of optimization problems,
Gk(x), k=0,1,2. . . , where each function gk(x), is a majorizer
of f(x). The MM algorithm for TV denoising can be ob-
tained by majorizing Eq. 11 by a quadratic function of x of
Eq. 13. Then the optimization function can be majorized
by a quadratic function, which can in turn be minimized
by solving a system of linear equations.

Rewriting Eq. 13 as

1
2 |xk|

x2 +
1
2
|xk| ≥ |x| (14)

and substituting v(n) for x and summing over n provides

∑
n

[
1

2 |vk(n)|
v2(n) +

1
2
|vk(n)|

]
≥∑

n
|v(n)| (15)

which can be compactly expressed as

1
2

vTΛ−1
k v +

1
2
‖vk‖1 ≥ ‖v‖1 (16)

Here, the absolute value of v is applied element-wise. Us-
ing Dx=TV(x), and replacing v by Dx and vT by xT DT , Eq.
16 can be expressed as

1
2

xT DTΛ−1
k Dx +

1
2
‖Dxk‖1 ≥ ‖Dx‖1 (17)

In Eq. 17, the majorizer of ‖Dx‖1=‖TV(x)‖1 is a func-
tion of x. Since xk is the value of x at the previous
iteration, so ‖Dx‖1 is constant. Also, Λk is also not a
function of x as it is a diagonal matrix with constant
values given as Λk=diag(|Dxk|). Then, a majorizer
of the TV cost function given in Eq. 5 can be de-
rived from Eq. 17 by adding 1

2‖y − x‖2
2 to both sides

1
2
‖y− x‖2

2 +
1
2

xT DTΛ−1
k Dx +

1
2
‖Dxk‖1 ≥

1
2
‖y− x‖2

2 + λ ‖Dx‖1 (18)
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gk(x) ≥ f (x) (19)

Therefore, the majorizer gk(x) is obtained as

gk(x) =
1
2
‖y− x‖2

2 +
1
2

xT DTΛ−1
k Dx +

1
2
‖Dxk‖1 (20)

satisfying gk(xk)=f(xk) with Λk=diag(|Dxk|). So, xk can be
obtained by minimizing gk(x) and written as

xk+1 = min(gk(x)) (21)

xk+1 =
1
2
‖y− x‖2

2 +
1
2

xT DTΛ−1
k Dx +

1
2
‖Dxk‖1 (22)

Thus differentiating Eq. 20 wrt x and equating to zero, we
obtain

− (y− x) = λDTΛ−1
k Dx = 0 (23)

y = x + λDTΛ−1
k Dx (24)

y = (1 + λDTΛ−1
k D)x (25)

which gives the minimum value of x. With an initial value,
the iterative solution to Eq. 22 is given by

xk+1 = (I + λDTΛ−1
k D)−1y (26)

Some of values of Dxk in Eq. 26 may go to zero, resulting
in certain entries of Λ−1

k of Eq. 26 as infinity. This can be
resolved using the matrix inverse lemma and rewriting as

(I + λDTΛ−1
k D)−1 = I − DT

(
1
λ

Λk + DDT
)−1

D (27)

In Eq. 27 values of right hand side (.)−1 will not approach
zero. Therefore, after substituting Λk=diag(|Dxk|) the
minimizer Eq. 26 becomes

xk+1 = y− DT
(

1
λ

diag(|Dxk|) + DDT
)−1

D (28)

which has no effect even if some elements of Dxk are zero.
The matrix ( 1

λ diag(|Dxk|) + DDT) in Eq. 28 is a banded
matrix helping to solve linear systems efficiently. Therefore,
the majorizer function Eq. 11 for TVCD can be expressed as

gkCD =
1
2
‖y− x‖2

2 + α
1
2

xT FT
DΛ−1

k1DFDx + α
1
2
‖FDxk‖1 + β

1
2

xTST
DΛ−1

k2DSDx + β
1
2
‖SDxk‖1 (29)

and the minimizer is

xk+1 = (I + αFT
DΛ−1

k1DFD + βST
DΛ−1

k2DSD)
−1y (30)

Some of values of FDxk and SDxk in Eq. 30 may go
to zero, resulting in certain entries of Λ−1

k1D and Λ−1
k2D of

Eq. 30 as infinity. To resolve this issue, instead of concur-
rently optimizing gkCD in Eq. 30, we optimize the function
sequentially using MM algorithm. Therefore, to find the
minimizer the governing equations are given as:

x
′

k+1 = y− FT
D(

1
α

diag(FDxk) + FDFT
D)
−1FDy (31)

xk+1 = y− ST
D(

1
β

diag(|SDx
′

k+1|) + SDST
D)
−1SDy (32)

3. Results and Discussion

We have analyzed all algorithms on 26 ECG test sig-
nals of 10 seconds, sampled at 360 Hz frequency with 11
bits/sample of the MIT-BIH database [22]. The algorithms
have been developed in MATLAB (R2019a) environment
on a computer having Intel(R) Core (TM)2 Duo CPU T6570
2.10 GHz, RAM 8 GB and hard disk of 500 GB. Performance
of all the methods is assessed through Mean Absolute De-
viation (MAD), Root Mean Square Difference (RMSD), Per-
centage Root Mean Square Difference (PRD), Normalized
Percentage Root Mean Square Difference (PRDN), Signal
to Noise Ratio (SNR) and Cross-Correlation (CC). Details

about these performance tools can be obtained from [23].
MAD, RMSD, PRD, PRDN are negative oriented (represent-
ing errors between original and restored signal) tools, and
hence lower values are considered better for denoising ap-
plications. SNR represents signal strength over noise, and
CC shows the similarity between original and denoised
signals. So, higher values are considered better. Although
the test signals may/may not have noise, for analysis pur-
pose as well as to check the performance of the algorithms,
additional noises, viz., PLI; Baseline wander, and White
Gaussian noise is added to these signals so as to make
SNRs of the noisy signal as 15 dB. In this paper, SNR at
three stages, i.e., before the addition of noise SNRi, after the
addition of noise SNRs and after application of algorithms
SNRr has been considered.

ECG Denoising using Total variation majorization
minimization approach
Inputs:ECG signal y(i), i = 1,...,N; length of ECG signal N;
Regularization parameter α, ; No. of iterations Nit
Output: Denoised signal, x = 1,...,M; MAD, RMSD, PRD,
PRDN, SNRi, SNRr, CC;

1. Set k=0;

2. x0=y ;

3. k = k +1;
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4. Compute xk+1 using Eq. 32;

5. Set xk = xk+1 as the current minimizer of Gk(x) in Eq.
29;

6. If k <Nit go to step (3);

Compute MAD, RMSD, PRD, PRDN, SNRi, SNRr, CC.

3.1. Regularization parameter

The regularization parameter λ >0 balances the regulariza-
tion and data-fidelity terms. Through proper selection of
the regularization parameter, a balance can be obtained to
reduce noise level and preserve signal quality. Thus, the
choice of the regularization parameter is critical to achiev-
ing just the right amount of noise removal. A larger value of
the parameter may not be able to denoise signal efficiently,
and lower value may produce over smoothing [14–16, 24].
In order to find the optimum values of the regularization
parameters, i.e., α and β, we have chosen a set of values,
i.e., 0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8 and 0.9. Since TV is based
on the average error between samples of any signal, assess-
ment tools with the error may be used for selection of λ

. Out of the MAD, RMSD, PRD, and PRDN, PRDN pro-
vides error related to distortion of the true signal [25], so
this assessment tool is utilized for fixation of regularization
parameters for TVCD. Moreover, PRDN is calculated after
removing gain and offset voltage, which is added to ECG
signals for storage purposes as DC/noise component has
no diagnostic meaning [26]. So, PRDN for different values
of α and β are calculated. We have performed the same
experiment over all the test signals resulting in similar find-
ings. Variation of PRDN with regularization parameter
for record \#109 is illustrated in Table 1, where β=0 refers
to the TV1D, and α=0 refers to the TV2D, and any other
combination of β and α indicates TVCD.

Following conclusions are drawn from Table 1:

• Lower values of regularization parameters produce
better results for TV1D, TV2D, and even for TVCD.

• Performance of TV2D is better than TV1D for the same
value of α and β.

• PRDN also depends upon the ratio of β
α

– It decreases with a decrease in β
α provided β is

higher than α.

– It increases with decrease in β
α provided α is

higher than β.

• For the same ratio of β
α lower values of both α and β

provide better results.

From Table 1 and Fig. 1, TV1D provides lowest PRDN
as 19X1−4 at α=0.1 whereas TV2D provides the least PRDN
as 18.40X10−4 at β=0.1. So, here we conclude that lower
regularization offers better results. Since PRDN of TV2D is
lower than TV1D, so we can also find that TV2D provides
better results than TV1D. The lowest PRDN for TVCD is
18.19X10−4 at α=0.1 and β=0.1 which is lower than TV1D
and TV2D and henceforth, α=0.1 and β=0.1 is fixed for
TVCD.

We apply the TV algorithms on the test signals of MIT-
BIH database and evaluate their performance in terms of
MAD, RMSD, PRD, PRDN, SNRi(dB), SNRr(dB), SNRim
(Improvement in SNR in dB) and CC.

Fig. 1. Effect of regularization parameter (α and β) on
PRDN for record #109

3.2. Results for combined difference total variation

Performance tools and their values for the TVCD are tab-
ulated in Table 2. Fig. 2 shows the result of TVCD over
record #119. Khamman and Ahmed [27] utilized optimal
wavelets to reduce noises from records #100, #101, #102,
#105, #110, #113, #117, #119, #205, #209 and #210.

The average performance parameters reported
SNRim=32.25 dB, PRD =39.36X10−2, PRDN 19.94X10−2

which are found to be menial than those reported in this
paper (SNRim =35.96dB, PRD=0.2853, PRDN= 0.0013).

Fig. 2. Original, simulated noise, noisy and TVCD recon-
structed signal #109
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Table 1. PRDN (X10−4) with different values of regularization parameters α and β for record #109.

α

β
0 0.1 0.2 0.4 0.5 0.6 0.8 0.9

0 0 - 19.01 - 26.77 - 38.51 - 43.43 - 48.10 - 57.95 - 62.99
0.1 18.40 1 18.19 0.5 19.22 0.25 21.42 0.2 21.97 1.67 22.34 0.125 23.01 0.111 22.89
0.2 21.75 2 20.93 1 22.33 0.5 24.87 0.4 25.61 0.33 26.10 0.25 26.38 0.222 26.24
0.4 27.87 4 25.28 2 27.35 1 29.32 0.8 30.16 0.67 30.39 0.5 30.97 0.444 31.47
0.5 30.90 5 27.62 2.5 29.27 1.25 30.99 1 31.66 0.83 31.85 0.625 32.84 0.555 33.24
0.6 33.29 6 29.67 3 31.35 1.5 32.54 1.2 32.97 1 33.57 0.75 34.67 0.667 34.87
0.8 37.56 8 32.56 4 33.86 2 35.54 1.6 36.05 1.33 36.28 1 37.57 0.888 38.37
0.9 39.65 9 34.26 4.5 34.80 2.25 36.57 1.8 37.37 1.5 38.21 1.125 39.16 1 39.80

Table 2. Performance matrix of ECG signals using the TV2D in noisy environment at α=0.1 and β=0.1.

Record MADx10−4 RMSDx10−2 PRD PRDN SNRi SNRs SNRr SNRim CC
100 1.55 1.24 0.2589 0.0012 13.78 15 51.74 36.74 0.9975
101 1.77 1.33 0.2764 0.0013 13.62 15 51.17 36.17 0.9978
102 2.01 1.42 0.2883 0.0014 13.77 15 50.80 35.80 0.9968
103 1.48 1.22 0.2486 0.0012 13.92 15 52.09 37.09 0.9992
104 2.05 1.43 0.2927 0.0014 13.78 15 50.67 35.67 0.9987
105 1.31 1.15 0.2342 0.0011 13.95 15 52.61 37.61 0.9993
106 3.59 1.89 0.3828 0.0019 13.99 15 48.34 33.34 0.9988
107 1.84 1.36 0.2778 0.0013 13.62 15 51.13 36.13 0.9999
108 2.34 1.53 0.3178 0.0015 13.73 15 49.96 34.96 0.9956
109 2.57 1.60 0.3391 0.0016 13.58 15 49.39 34.39 0.9991
113 1.93 1.39 0.2845 0.0014 13.72 15 50.92 35.92 0.9995
115 1.54 1.24 0.2668 0.0012 13.26 15 51.48 36.48 0.9992
117 1.84 1.36 0.3166 0.0013 12.45 15 49.99 34.99 0.9983
119 2.06 1.43 0.3338 0.0014 12.71 15 49.53 34.53 0.9996
121 1.20 1.09 0.2509 0.0011 12.99 15 52.01 37.01 0.9988
124 1.49 1.22 0.2809 0.0012 12.71 15 51.03 36.03 0.9995
201 1.20 1.09 0.2213 0.0011 13.78 15 53.10 38.10 0.9985
205 1.82 1.35 0.2836 0.0013 13.66 15 50.95 35.95 0.9974
209 2.39 1.54 0.3094 0.0015 13.97 15 20.19 35.19 0.9980
212 2.14 1.46 0.2945 0.0014 13.93 15 50.62 35.62 0.9990
215 2.63 1.62 0.3254 0.0016 13.99 15 49.75 34.75 0.9977
217 2.27 1.51 0.3002 0.0015 14.25 15 50.45 35.45 0.9997
219 1.77 1.33 0.2940 0.0013 13.18 15 50.63 35.63 0.9996
223 1.21 1.10 0.2409 0.0011 13.06 15 52.36 37.36 0.9996
230 1.45 1.20 0.2483 0.0012 13.60 15 52.10 37.10 0.9995
231 1.60 1.27 0.2513 0.0012 13.99 15 51.99 36.99 0.9991

Average 1.89 1.36 0.2853 0.0013 13.58 - - 35.96 0.9987

ECG denoising models using linear polynomials and
wavelet thresholding techniques have been presented in
[28], where authors have claimed higher SNR (9 to 30 dB)
with PRD>1. SNRim (upto 6 dB) is enhanced through
Wavelet Domain Wiener Filtering for noise-free signals of
the different datasets in [29]. ECG denoising method based

on bivariate shrinkage function improved SNRim to 6 dB
over level-dependent threshold, Visushrink, Sureshrink
and BayesShrink for record #103 [30]. Jokic et al. [31] mod-
eled ECG signals using polynomials on the same database
and reported the lowest PRD as 6.1 for the ECG record
#205. However, with the TVCD method we could model
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the same signal with PRD as 0.2836. Least square iterative
polynomials were also used to model ECG signals in [32].
Here the authors have claimed their computed RMSD of
the order of 10−2 for record #100, which is better than But-
terworth, moving average, FIR filters, and median filters.
For all the signals, RMSD attained by the TVCD approach
is of order 10−3 which is even better than those reported in
[33]. CC values are also better than those reported in [21].

4. Conclusions

TV of a signal is the sum of differences between adjacent
samples. It is observed that signals having high noise show
large TV. So, TV models are used to reduce noise from sig-
nals. In this paper, the concept of the first difference TV has
been utilized to develop combined difference TV model for
reduction of noise. The proposed model is optimized using
MM optimization technique. The model is tested on MIT-
BIH signals to reduce simulated noise. The performance of
the TV denoising model depends upon the selection of the
regularization parameter. The lower value of regularization
may yield better results at the cost of over smoothening.
The results of the TVCD are compared with recent existing
models and are found to be superior in terms of standard
performance assessment tools.
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