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A static analysis of a pre-stressed plate-strip made from functionally-graded material (FGM) containing a
circular hole has been investigated under bending forces. The plate-strip is simply supported on two opposite
ends and the pre-stresses are formed by the uniformly distributed forces which acts on these two ends before the
main loading. The influences of pre-stresses in the plate-strip on the distributions of displacements and stresses
around the hole caused by the additional bending forces acting on the upper face-plane of the FGM plate-
strip are investigated. The Linearized Three-Dimensional Elasticity Theory and the generalized plane-strain
conditions are assumed for the modelling of the theoretical investigations.
Young’s modulus of the medium varies continuously in the horizontal and vertical directions according to
power law distribution, but the Poisson’s ratio and material density are assumed to be constant. The solution of
the considered problem is obtained numerically with the help of the Finite Element Method (FEM). Numerical
results of distributions of the displacements and stresses around the hole are presented and discussed for
various problem parameters such as, material property, plate size, initial effect and position of the hole.
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1. Introduction

Functionally Graded Materials (FGM) is a new material
concept wherein material properties vary continuously
from one point to another in some specific directions, FGM
is widely used in many engineering applications due to
their high strength and thermal resistance, such as chemi-
cal engineering, electronic engineering, biology, aerospace,
biomedicine etc.

FGM were first used in Japan on a spacecraft project in
1984. A concept of FGM was given in [1]. Since then, the
interest of researchers on the mechanics of FGM has grad-
ually increased, and in the last 20 years many numerical,
experimental and theoretical studies have been conducted.
Some plane elasticity problems and analytical solutions
were given for plates made of FGM with and without cracks
under different boundary conditions in [2]. Axisymmetric
bending and stretching of functionally graded solid and
annular circular plates was examined using the first-order
shear deformation Mindlin plate theory in [3]. Graded fi-

nite elements were formulated using linear interpolation
functions to model the behavior of inhomogeneous materi-
als in [4]. Graded finite elements were presented using a
generalized isoparametric formulation in [5]. The formula-
tions of the series solutions of the FGM plates were derived
in [6] and numerical solutions of theoretical formulations
of this study were studied by FEM using MARC program
in [7]. Multiple isoparametric finite element formulation
was used to examine the influence of the material property
inhomogeneity on the stress concentration factor due to a
circular hole in functionally graded panels [8]. Elasticity
solutions for the axisymmetric problem of a functionally
graded annular plate under uniformly loading was investi-
gated in [9].

A complex variable method was presented for calcu-
lating stress distribution around a circular hole in a FGM
plate in [10]. The least square boundary collocation tech-
nique combined with complex variable method was used
for calculating two dimensional stress distribution of a fi-
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nite FGM plate with a circular hole under arbitrary constant
loads [11]. A comprehensive review of FGM has been made
in [12]. Geometrically nonlinear analysis of planar beam
and frame structures made of FGM by using finite element
method was studied in [13]. The modelling of the FG beam
resting in/on an accurately conceived soil medium contin-
uum was investigated on both dynamic and static loading
in [14]. Higher order shear deformation theory for FGM
plates was proposed in [15]. An alternative solution pro-
cedure by using Gateaux differential method for analysis
of shear deformable FGM beams with mixed formulation
was studied in [16]. The static behavior of FGM beams was
investigated using 3D Saint-Venant’s theory in [17]. Static
analysis of a square functionally graded sandwich plate
was investigated by using the four variable plate theory in
[18].

However, there are no research studies on preliminary
effects, such as pre-stresses in the structural element for
FGM. The aim of the present investigation is to determine
the influence of initial stresses on static analysis of FGM
plates with a hole under bending. The distributions of
stresses and displacements caused by the action of addi-
tional uniform loading may significantly affected with ini-
tial stresses. The superposition principle can not be ap-
plicable to these problems. Thus, mathematical modeling
of the problem is carried out within the framework of the
Linearized Three Dimensional Theory of Elasticity that is
obtained by linearizing the three dimensional nonlinear
theory of elasticity. FEM is employed to solve the corre-
sponding boundary-value problem. The numerical results
on the effect of the pre-stresses and varying material prop-
erties of FGM on the distributions of displacements and
stresses caused by the additional uniform loading are pre-
sented.

2. Mathematical Backgrounds

The geometry and loading of the plate-strip are given in Fig.
1. The plate-strip is simple supported at two edges and the
pre-stresses in its structure being formed by the uniformly
distributed normal force acting on these two edges and
having a unit density q (Fig. 1a). Beside, the additional
uniformly distributed normal forces with a unit density p
act on the upper face-plane of the plate (Fig. 1b). Since
the plate-strip discussed is functional, the material prop-
erties depend on the coordinates. As mentioned in most
studies on the FGM, the effect of Poisson’s ratio which is a
function of coordinates on the distributions of stresses and
displacements can be omitted. Poisson’s ratio is assumed
to be constant.

Two different problems will be discussed in which the

Young Module changes with respect to the horizontal direc-
tion (Ox1 axis) and vertical direction (Ox2 axis) according
to power-law distribution, respectively. Two problems are
solved according to the variation of Young Module; in the
first (second) problem Young Module varies according to
Ox1 (Ox2) axis. The following functional forms are used
for the nodal values of Young’s modulus;

Problem1: E (x1, x2) = E (x1) = E0 (ax1 + b)n (x1 − FGM)

Problem2: E (x1, x2) = E (x2) = E0 (cx2 + d)n (x2 − FGM) ,

E0, a, b, c, d, n ∈ R
(1)

where E0 (E1) is the Young’s modulus at xi = 0 (x1 =
`/2 or x2 = h ) and n is the exponent of the power law
material variation. There are two cases occur; if E0 < E1

then FGM progressively stiffens else if E0 > E1 then FGM
progressively softens along the considered direction.

These problems are solved for a half of the domain,
because of the symmetry of the geometry and loading with
respect to the planes x1/` = 1/2 . The material property
gradient around the circular hole for the half of the solution
domain is shown for the Problem 1 (Problem 2) in Fig. 2a
(Fig. 2b).

(a)

(b)

Fig. 1. (a) Loading of the rectangular plate-strip including
circular hole in the (a) initial and (b) perturbed stage.

The mathematical model of the problem is made in the
framework of the Linearized Three Dimensional Elasticity
Theory under plane strain-state. For the solution proce-
dure, considered problems are examined in two stages: the
initial and perturbed stages. In the initial stage the consid-
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(a)

(b)

Fig. 2. Half FGM plate-strip with material properties
varying over (a) Ox1 axis (Problem 1) and, (b) Ox2 axis

(Problem 2).

ered FGM plate-strip with a hole is subjected to uniformly
distributed normal stretching forces of intensity q acting on
two opposite edges. After solution to considered problem
in the first stages, stresses called as pre-stresses are deter-
mined in the plate-strip. In the perturbed stage assumed
that this pre-stressed FGM plate-strip with a hole is sub-
jected to additional uniformly distributed normal forces
intensity of which is p (« q) on its upper face plane. For sim-
plicity of notation, superscript 0 (1) denotes the quantities
referring to the initial (perturbed) stage.

Solution domain of boundary value problem (BVP) is;

Ω′ = Ω−Ωh

Ω = {0 ≤ x1 ≤ `; 0 ≤ x2 ≤ h}
Ωh ={

(x1, x2) | (x1 − (`s + a))2 + (x2 − (hL + a))2 ≤ a2
} (2)

The solution domain is discretized a finite number of
sub-domains (FEs) and the solution in each sub-domain is

considered as a polynomial function. For the FGM plate-
strip, the displacement functions for each finite element
can be written as; u(e)

1

u(e)
2

 =
n

∑
i=1

Ni

 u(e)
1i

u(e)
2i

 , e = 1, 2, . . . , M (3)

In (3), Ni is the shape function, uki is the nodal displace-
ment corresponding to node i in the k direction, n is total
number of nodal points in the element, M is total number
of finite elements in the solution domain.

As usual, strain functions are derived from displace-
ments by differentiation as

ε(e) = B(e)u(e) (4)

where u(e) is the nodal displacement vector and B(e) is the
displacement-strain matrix of shape function derivatives.

Thus stress-strain relations can be given by

σ(e) = D(e) (x1, x2) ε(e) (5)

where D(e) (x1, x2) is the constitutive matrix, which
is a function of position of points. So, D(e)

ij =

D(e)
ij (x1) ( Problem 1) or D(e)

ij = D(e)
ij (x2) ( Problem 2).

The elements of this matrix can be given for the constant
Poisson ratio;

D11 = D22 =
(1−v)E(xi)
(1+u)(1−2v) ,

D12 = D21 =
vE(xi)

(1+v)(1−2v) , D66 =
E(xi)

2(1+v)

(6)

where i=1 (2) for Problem 1 (2). The pre-stresses in the
structure of the FGM plate-strip are determined with the
help of classical linear elasticity theory in the initial stage.
Equations and relations provided in the solution domain
of the initial stage;

∂σ
(0)
ij

∂xj
= 0

σ(0) = D (xi) ε(0), σ(0) =
[
σ
(0)
11 , σ

(0)
22 , τ

(0)
12

]
, ε(0) =[

ε
(0)
11 , ε

(0)
22 , γ

(0)
12

]
ε
(0)
ij =

1
2

 ∂u(0)
i

∂xj
+

∂u(0)
j

∂xi

 , i, j = 1, 2

u2| x1=0;`

x2ε[0,h]
= 0, σ

(0)
11

∣∣∣ x1=0;`

x2ε[0,h]
= 0, σ

(0)
12

∣∣∣ x1=0;`

x2ε[0,h]
= 0, σ

(0)
ij x2=0;h

x1∈[0,`]
= 0,

σ
(0)
ij nj

∣∣∣
S
= 0, i, j = 1, 2

S =
{
(x1, x2) | (x1 − (`s + a))2 + (x2 − (hL + a))2 = a2

}
(7)

In (7), S is the rim of circular hole, nj is the component
of unit normal vector on the rim of circular hole. The
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mathematical model of the BVP in the perturbed stage
is given below [19]:

∂

∂xj

(
σ
(1)
ji + σ

(0)
in

∂u(1)
i

∂xn

)
= 0

σ(1) = D (xi) ε(1)

ε
(1)
ij =

1
2

 ∂u(1)
i

∂xj
+

∂u(1)
j

∂xi

 , i, j = 1, 2

u(1)
2

∣∣∣ x1=0;`

x2ε[0,h]
= 0,

(
σ
(1)
j1 + σ

(0)
1n

∂u(1)
1

∂xn

)
nj

∣∣∣∣ x1=0;`

x2ε[0,h]
= 0σ

(1)
jk + σ

(0)
kn

∂u(1)
k

∂xn

 nj

∣∣∣∣∣∣ x2=h

x1ε[0,`]

= pδk
2 ,

(
σ
(1)
ji + σ

(0)
in

∂u(1)
i

∂xn

)
nj

∣∣∣∣∣ x2=0

x1ε[0,`]

= 0

σ
(1)
ji + σ

(0)
in

∂u(1)
i

∂xn

 nj

∣∣∣∣∣∣
S

= 0, i; j; k = 1, 2

(8)

Note that if the pre-stresses in the structure is omitted in
the perturbed stage (8) i.e. σ

(0)
in = 0, these problem coincide

with the corresponding problem modeled in the framework
of the clasical theory of elasticity.

3. FEM Modeling of the problem

For the FEM modeling of the BVP (7) the functional

Π(0) = 1
2
∫∫

Ω′ σ
(0)
ij ε

(0)
ij dx1dx2

−
∫ h

0 qu(0)
1

∣∣∣
x1=0

dx2 +
∫ h

0 qu(0)
1

∣∣∣
x1=`

dx2, i; j = 1, 2
(9)

and for the FEM modelling of the BVP (8) the functional

Π(1) =
1
2

∫∫
Ω′

(
Tij

∂uj

∂xi

)
dx1dx2 −

∫ `

0
pu(1)

2

∣∣∣∣
x2=h

dx1

(10)

where

Tij (xk) = σ
(1)
ij + σ

(0)
in

∂u(1)
i

∂xn
, i; j; k = 1, 2 (11)

are used [20]. In (9)-(11) components of σij, Tij are func-
tions of position of points. The principle of virtual work
and Ritz technique yield the following finite element stiff-
ness equation;

for the initial stage;

K(0)u(0) = F(0) (12)

and for the perturbed stage

K(1)u(1) = F(1) (13)

where F(0), F(1) are the load vectors, K(0), K(1) are the Stiff-
ness matrices, u(0), u(1) are the nodal displacements vectors
and the element stiffness matrix K(0)e or K(1)e is

K(s)e =
∫

Ωe

(
B(s)e

)T
D(s)eB(s)edΩe (14)

where Ωe

(
Ω =

⋃M
e=1 Ωe

)
is the domain of eth finite el-

ement and T indicates transpose, s = 0 (s = 1) for
the first (second) stage, D(e)

ij = D(e)
ij (x1) ( Problem 1) or

D(e)
ij = D(e)

ij (x2) (Problem 2 ). Nodal displacements are ob-
tained by solving the equations 12 and 13 , however Eq. 13
includes the values of stresses from the initial stage. So, the
stress distributions for the initial stage should be known
before finding the solution of Eq. 13. In each finite element
Gauss quadrature method with 10 sample points is used to
obtain the numerical values of definite integrals.

The solution domain Ω
′

is divided into 8 curvilinear
triangular FEs with 6 nodes and Nine-noded quadrilateral
(Q9) elements are used for the domain not covered by the
triangular FEs. The formulation of the standard shape
functions are;

For corner nodes;

Ni =
1
4

ξη (ξ + ξi) (η + ηi) (15)

For mid-side nodes;

ξi = 0⇒ Ni =
1
2 η
(
1− ξ2) (η + ηi)

ηi = 0⇒ Ni =
1
2 ξ (ξ + ξi)

(
1− η2) (16)

For center node;

Ni =
(

1− ξ2
) (

1− η2
)

(17)

where (ξ, η) indicate normalized coordinates in the interval
[-1,1] and (ξi, ηi) indicate the local coordinates of node i.

The formulation of the shape functions for the triangular
FEs are;

Ni (x1, x2) = ai + bix1 + cix2 + dix2
1 + eix1x2 + fix2

2 (18)

The unknown coefficients of the Eq. 18 for each node
can be found with

Ni

(
x1j, x2j

)
= δij (19)

where δij is the Kronecker symbol and
(

x1j, x2j

)
are the

coordinates of j -th node in the Ox1x2 coordinate. The
same finite element discretization is used in finite element
solution of BVPs of both stages
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4. Result discussions

A half model is used because of the symmetry of the prob-
lem about the x1 axis. Solution domain is divided into 80
and 12 rectangular elements along the Ox1 and Ox2 axes,
respectively. In the FEM modeling, a total of 956 rectangu-
lar elements with 9 nodes, 8 curved edges triangular finite
elements surrounded the circular hole with 6 nodes, totally
4027 nodes and 8004 NDOFs are employed. FE discretiza-
tion of the solution domain is selected among the finite
element meshes in which the numerical results found for
many finite elements’ meshes are best approached to the
corresponding numerical results in the literature. It should
be noted that the graphs of the displacements and stresses
obtained for the Problem 1 (Problem 2) are given according
to the axis Ox1(Ox2) . In the present study, Poisson’s ratio
is assumed to be constant and set to be v = 0.3.

The main aim of the present numerical investigations is
to determine how the pre-stresses effect the stresses and dis-
placements around the hole in the FGM plate-strip under
bending. Before considering the main numerical results,
for testing of the used calculation algorithm and programs
which are composed by the authors and realized in FOR-
TRAN 77. First it is considered the numerical results ob-
tained for the case where the material of the plate-strip is
isotropic and contains a circular hole in the initial stage.

In the case of homogeneous material of the infinite plate,
the distribution of the stress (σθθ) is given [21]

σθθ = q(1− 2 cos 2θ) (20)

In this study if the plate size is much bigger than the
hole-diameter, our numerical results should close to the
results (20) given for the infinite plate. So, in the initial
stage (Fig. 1a), by decreasing a/` or increasing `S/a, stress
distribution for an infinite plane containing a circular hole
must be obtained given in [21, 22].

Table 1 show the results determined by employing the
present algorithm overlap with the corresponding ones
obtained in the paper [21, 22].

Focusing second on Fig. 3 Fig. 3a (b) show some sample
results for the stress distribution of σ

(1)
11 /p in the unholed

medium for Problem (2) obtained from [23] ([2]) for some
values of the material nonhomogeneity parameter E1/E0.
These numerical results obtained for graded plate-strip
without a hole under bending for both problems. In prob-
lem 1 (2); material properties varying over Ox1 (Ox2) axes.
Notice that the graded solution and the exact solution is
identical.

Since dimensionless quantities are used in the numer-
ical calculation, the ratio of E1/E0 represent the largest
Young modulus in the plate-strip. For instance, E1/E0 = 1

Table 1. The stress concentration of σ
(0)
θθ / q at the given

values of θ around the hole for the isotropic plate-strip
with a circular hole

`S/a a/`
θ

3π/4 π/2 π

17.41 0.0140 1.0388 3.2156 -0.9513

18.75 0.0130 1.0319 3.1751 -0.9382

19.50 0.0125 1.0284 3.1538 -0.9317

20.31 0.0120 1.0247 3.1316 -0.9252

22.15 0.0110 1.0173 3.0339 -0.9122

24.37 0.0100 1.0099 3.0303 -0.8987

25.39 0.0096 1.0071 3.0068 -0.8931

∞ − 1.0 3.0 -1

corresponds to the case where the plate-strip material is
homogeneous.

In Fig. 3a (3b), if the plate-strip has the FGM property
in the direction of Ox1( Problem 1) (Ox2( Problem 2)) ,
graphics approach to the graphic given in the homoge-
neous plate as E1/E0 decreases, and for the case where
E1/E0 = 1 the results overlap with the exact analytical
solution given in [23]([2]). These results also verify the
correctness of the programs and algorithm made by the
authors.

Fig. 4 (Fig. 5 ) compare the effect of initial compressive
force (i.e. q/EO < 0 ) versus initial stretching force on
the normalized tangential stress (normalized radial stress)
distribution of finite FGM plate in the case where h/ ` =

0.15, hu/a = 5, E1/E0 = 5, n = 2 and Young’s Modulus
is given as Eq. 1. The effect of initial compressive force
(i.e. q/EO < 0 ) is shown as dashed lines in the figures.
It is found that the stress distribution around the hole is
affected from the initial compressive force much more than
the corresponding values of the initial stretching force (i.e.
q/E0 > 0 ). The absolute values of stresses of σ

(1)
θθ /p and

σ
(1)
rr /p increase (decrease) with the absolute values of q/E0

under compression (initial tension).
Fig. 6 (Fig. 7 ) compare the effect of initial compressive

force (i.e. q/E0 < 0 ) versus initial stretching force on the
distribution of the normalized radial (normalized tangen-
tial) displacement of finite FGM plate with hole in the case
where h/` = 0.15, hu/a = 5 E1/E0 = 5, n = 2 and Young’s
Modulus is given as eq. 1. The effect of initial compressive
force (i.e. q/E0 < 0 ) is shown as dashed lines in the figures.
It is found that the both displacement distributions around
the hole is affected from the initial compressive force much
more than the corresponding values of the initial stretching
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(a)

(b)

Fig. 3. Comparison of FE results and exact equations of
stress distribution of σ

(1)
11 /p under bending for q/E0 = 0

for (a) Problem 1 along the Ox1, axis in x2 = h plane (b)
Problem 2 along the Ox2 axis in x1 = `/4 plane.

force. The absolute values of the displacements u(1)
r /` and

u(1)
θ /` increase (decrease) with the absolute values of q/E0

under compression (initial tension). The variation of pre-
stresses does not change the position of the displacements’
maximum. The absolute maximum values of u(1)

r /` occur
at the poles θ = ±π/2 and the absolute maximum values
of u(1)

θ /` occur at the pole θ = π

The variation of normalized tangential (radial) stress
around the circular hole is plotted in Fig. 8 (Fig. 9 ) for dif-
ferent size of the plate-strip (i.e., h/` ) for both the q/E0 = 0
and q/E0 = 0.005 where hu/a = 5, n = 2, E1/E0 = 5. An
increase in the values of h/`, causes a decrease in the abso-
lute values of stresses for both problems. The difference be-

(a)

(b)

Fig. 4. The normalized tangential stress σ
(1)
θθ /p on the rim

of circular hole around θ ∈ [−π/2,+π/2] for the different
pre-stresses under E1/E0 = 5, hu/a = 5 and h /
` = 0.15, n = 2 for (a)Problem1(b)Problem2.

tween the values obtained for q/E0 = 0 and q/E0 = 0.005
also decrease with h/`.

The variation of normalized radial (tangential) displace-
ment around the circular hole is plotted in Fig. 10 (Fig. 11 )
for different size of plate-strip (i.e., h/` ) for two cases of
q/E0 ( i.e. q/E0 = 0; q/E0 = 0.005) where hu/a = 5, n =

2, E1/E0 = 5. An increase in the value of h/` cause a de-
crease in the absolute values of displacements for both
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(a)

(b)

Fig. 5. The normalized radial stress σ
(1)
rr /p on the rim of

circular hole around θ ∈ [−π/2,+π/2] for the different
pre-stresses under E1/E0 = 5, hu/a = 5 and

h/` = 0.15, n = 2 for (a) Problem 1 (b), Problem 2.

problems. The difference between the values obtained for
q/E0 = 0 and q/E0 = 0.005 also decrease with h/`

Figs. 12, 13 and 14 plot the variation of normalized
stresses σ

(1)
θθ /p, σ

(1)
rr /p and τ

(1)
rθ /p respectively, for differ-

ent location of hole for two cases of q/E0 (i.e., q/E0 = 0;
q/E0 = 0,005 ) where h/` = 0.15, n = 2, E1/E0 = 5. The
location of the hole is characterized by the parameter hu/ a,

(a)

(b)

Fig. 6. The normalized radial displacement u(1)
r /` on the

rim of circular hole around θ ∈ [−π/2,+π/2] for the
different pre-stresses under E1/E0 = 5, hu/a = 5 and

h/` = 0.15, n = 2 for (a) Problem 1 (b) Problem 2.

which shows the distance between the upper surface of the
circular hole and the upper face of the plate. It follows from
the graphs that the absolute values of the stresses increase
with decreasing the parameter hu/ a for both cases of q/E0.

The normalized tangential and radial displacements
around the circular hole are plotted for two cases of q/E0

where h/` = 0.15, hu/a = 5 and E1/E0 = 5 in Fig. 15 and
Fig. 16 respectively, according to the changes of power-law
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(a)

(b)

Fig. 7. The normalized tangential displacement u(1)
θ /` on

the rim of circular hole around θ ∈ [−π/2,+π/2] for the
different pre-stresses under E1/E0 = 5, hu/a = 5 and

h/` = 0.15, n = 2 for

(a) Problem 1 (b) Problem 2

exponent value, i.e., n. All the displacements around the
hole increase with the power-law exponent value (n). The
presence of initial stress reduces the effect of n

The influence of Young’s Modulus ratio (E1/E0) on the
normalized radial and tangential displacement are inves-

(a)

(b)

Fig. 8. The normalized tangential stress σ
(1)
θθ /p on the rim

of circular hole around θ ∈ [−π/2,+π/2] for the different
thickness of the plate-strip (i.e., h/` ) under

E1/E0 = 5, hu/a = 5 and n = 2 for two cases of q/E0 for
(a) Problem 1 (b) Problem 2

tigated base on two n values, i.e., n = 0.5 and n = 2 in
Fig. 17 and Fig. 18, respectively under q/E0 = 0.005, h /
` = 0.15, hu/a = 5 for (a) Problem 1, (b) Problem 2. It
can be seen that for a certain value of n, the displacement
decreases with increasing Young’s Modulus ratio. Also,
the displacements increase with the power-law exponent
value, while the displacements does not alter with the in-
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(a)

(b)

Fig. 9. The normalized radial stress σ
(1)
rr /p on the rim of

circular hole around θ ∈ [−π/2,+π/2] for the different
thickness of the plate-strip (i.e., h/` ) under

E1/E0 = 5, hu/a = 5 and n = 2 for two cases of q/E0 for
(a) Problem 1, (b) Problem 2.

crease of the power-law exponent value for E1/E0 = 1. The
difference between the values obtained for n = 0.5 and
n = 2 also decrease with E1/E0.

The angular position at which the normalized tangential
and radial distributions become maximum is not affected
either by the functional form of the material property grada-

(a)

(b)

Fig. 10. The normalized radial displacement u(1)
r /` on the

rim of circular hole around θ ∈ [−π/2,+π/2] for the
different size of the plate-strip (i.e., h/` ) under E1/E0 = 5
hu/a = 5 and n = 2 for two cases of q/EO for (a) Problem

1 (b) Problem 2

tion or the direction. The radial displacement is maximum
at the poles θ = ±π/2 and reaches a minimum occurs
at θ = π, however the tangential displacement is maxi-
mum at the pole θ = π and reaches a minimum occurs at
θ = ±π/2.

The effect of Young’s Modulus ratio (E1/E0) on the nor-
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(a)

(b)

Fig. 11. The normalized tangential displacement u(1)
θ /` on

the rim of circular hole around θ ∈ [−π/2,+π/2] for the
different size of the plate-strip (i.e., h/` ) under E1/E0 = 5,
hu/a = 5 and n = 2 for two case of q/E0 for (a) Problem 1,

(b) Problem 2.

malized tangential stresses for some power-law exponents
are presented for Problem 1 (Problem 2 ) in Table 2 (Table
3). The values of numerator of the fraction indicates the
values of stress for q/E0 = 0 (no initial stress), while the
values of denominator of the fraction indicates the values
of stress for q/E0 = 0.005.

(a)

(b)

Fig. 12. The normalized tangential stress σ
(1)
θθ /p on the

rim of circular hole around θ ∈ [−π/2,+π/2] for the
different location of the hole (i.e., hu/a ) under E1/E0 = 5
h/` = 0.15 and n = 2 for two cases of q/E0 for (a) Problem

1, (b) Problem 2

In Table 2, for Problem 1, it can be seen that for a certain
power-law exponent (n), the normalized tangential stress
increases absolutely with Young’s Modulus ratio at the
poles θ = ±π/2, π, while the stresses decrease absolutely
at the pole θ = 3π/4 and decrease at the pole θ = −3π/4
with Young’s Modulus ratio. Also, it can be seen that for a
certain Young’s Modulus ratio, the normalized tangential
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(a)

(b)

Fig. 13. The normalized radial stress σ
(1)
rr /p on the rim of

circular hole around θ ∈ [−π/2,+π/2] for the different
location of the hole (i.e., hu/a ) under E1/E0 = 5

h/` = 0.15 and n = 2 for two cases of q/E0 for (a) Problem
1 (b), Problem 2

stress increases absolutely with power- law exponent at the
poles θ = ±π/2, π, while the stresses decrease absolutely
at the pole θ = 3π/4 and decrease at the pole θ = −3π/4
with power-law exponent. The presence of initial stresses
in the plate reduces the values of stresses and stresses are
more affected by the variation of the Young’s Modulus ratio

(a)

(b)

Fig. 14. The normalized shear stress τ
(1)
rθ /p on the rim of

circular hole around θ ∈ [−π/2,+π/2] for the different
location of the hole (i.e., hu/a ) under E1/E0 = 5

h/` = 0.15 and n = 2 for two cases of q/E0 for (a)
Problem 1 (b), Problem 2.

and the power-law exponent for the case of the presence of
the initial stresses.

In Table 3, for Problem 2, it can be seen that for a certain
power-law exponent, the normalized tangential stress in-
creases with Young’s Modulus ratio at θ = ±π/2,±3π/4
while the stresses decrease with Young’s Modulus ratio
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(a)

(b)

Fig. 15. The normalized tangential displacement u(1)
θ /` on

the rim of circular hole around θ ∈ [−π/2,+π/2] for the
different power-law exponent (i.e. n) under E1/E0 = 5
h/` = 0.15 and hu/a = 5 for two cases of q/E0 for (a)

Problem 1 (b) Problem 2

at θ = π. Also, it can be seen that for a certain Young’s
Modulus ratio, the normalized tangential stress increases
absolutely with power-law exponent for n = 1/2 → 2,
while, the stress decreases absolutely for n = 2→ 5, at θ =

π/2, 3π/4 for (E1/E0 < 1) , however the stresses increase
absolutely with Young’s Modulus ratio at θ = π/2, 3π/4

for (E1/E0 > 1). At θ = π, the normalized tangential stress
increases with power-law exponent for n = 1/2→ 2, while,
the stress decreases for n = 2→ 5, for all values of Young’s
Modulus ratio. And at θ = −3π/2 and π/2, the normal-
ized tangential stress increases absolutely with power-law
exponent for (E1/E0 < 1) , while the stresses increase for
n = 1/2 → 2, but decrease for n = 2 → 5 with Young’s
Modulus ratio for (E1/E0 > 1).

The results show that the normalized tangential stresses
are affected more by the use of graded elements in Problem
2 than in Problem 1.

5. Conclusions

In this study, The Linearized Three-Dimensional Elasticity
Theory is used to analyze the effect of pre-stresses on the
plate-strip which include a circular hole under bending.
The plate-strip’s material is assumed functionally graded.
Also the influence of grading direction on the static anal-
ysis of pre-stressed plate-strip is investigated. Using the
FEM, influence of power-law exponent, location of hole,
size of plate-strip and magnitude of prestresses on the dis-
placements and the stresses on the rim of circular hole have
been investigated. From the numerical results obtained,
the following conclusions can be drawn:

• The initial compressive force affect the stresses and
displacements much more than the initial stretching
force,

• An increase in the absolute values of initial compres-
sive force causes an increase in the absolute values of
stresses and displacements,

• An increase in the absolute values of initial tension
force causes a decrease in the absolute values of
stresses and displacements,

• The variation of pre-stresses does not change the an-
gular position of the maximum stresses and displace-
ments, The absolute values of stresses and displace-
ments decrease with plate size,

• The difference between the values of stresses and dis-
placements obtained for q/E0 = 0 and q/E0 = 0.005
decrease with plate size,

• The absolute values of stresses increase with decreas-
ing the distance between the upper face of the plate-
strip and the upper surface of the circular hole,

• The displacements around the circular hole increase
with the increase of the power-law exponent value,
For a certain power-law exponent, the displacement
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(a) (b)

Fig. 16. The normalized radial displacement u(1)
r /` on the rim of circular hole around θ ∈ [−π/2,+π/2] for the different

power-law exponent (i.e., n ) under E1/E0 = 5 h/` = 0.15 and hu/a = 5 for two cases of q/EO for (a) Problem 1, (b)
Problem 2.

(a) (b)

Fig. 17. The normalized radial displacement u(1)
r /` on the rim of circular hole around θ ∈ [−π/2,+π/2] for the different

values of E1/E0, for two cases of n (n = 0.5 and n = 2) under q/E0 = 0.005, h/` = 0.15, hu/a = 5 for (a) Problem 1, (b)
Problem 2.

decreases with Young’s Modulus ratio, The amplitude
of the displacements for the graded material for which
the inhomogeneity is parallel to the direction of ini-
tial stresses and perpendicular to the bending force

(Problem 1) is larger than the inhomogeneity is perpen-
dicular to the direction of initial stresses and parallel
to the bending force,

• The effects of the variation of the Young’s Modulus
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(a) (b)

Fig. 18. The normalized tangential displacement u(1)
θ /` on the rim of circular hole around θ ∈ [−π/2,+π/2] for the

different values of E1/E0, for two cases of n(n = 0.5 and n = 2 ) under q/E0 = 0.005, h/` = 0.15, hu/a = 5 for (a) Problem
1, (b) Problem 2.

Table 2. Effect of Young’s Modulus on σ
(1)
θθ / p at the poles (θ = ∓π/2, π,∓3π/4) around the circular hole for some

power-law exponents for two cases of q/E0 for Problem 1.

σ
(1)
θθ / p|q/E0=0

σ
(1)
θθ / p|q/E0=0.005

E1/E0

θ

0.1 0.2 1 2 5 10.0 20.0 50.0

n=1/2

π
2

−7.6055
−4.3071

−8.9217
−5.3575

−9.7772
−7.5231

−9.8013
−8.3599

−9.8076
−9.1286

−9.8085
−9.4500

−9.8087
−9.6247

−9.8087
−9.7341

3π
4

−2.1077
−1.0662

−1.2435
−0.7822

−0.3820
−0.4211

−0.3492
−0.3872

−0.3407
−0.3611

−0.3396
−0.3506

−0.3393
−0.3450

−0.3392
−0.3415

π −1.1314
−1.0953

−1.3131
−1.2832

−1.6106
−1.6033

−1.6257
−1.6221

−1.6294
−1.6280

−1.6299
−1.6292

−1.6300
−1.6296

−1.6300
−1.6299

− 3π
4

1.4386
0.4513

0.4235
0.0070

−0.6887
−0.6376

−0.7425
−0.6984

−0.7573
−0.7345

−0.7594
−0.7471

−0.7599
−0.7536

−0.7600
−0.7575

−π
2

8.2652
4.8975

9.7741
6.1439

10.7118
8.4380

10.7180
9.2660

10.7172
10.0342

10.7169
10.3565

10.7169
10.5319

10.7169
10.6418

n=2

π
2

−9.4458
−3.7103

−9.5947
−4.9374

−9.7772
−7.5231

−9.8158
−8.3097

−9.8480
−9.0171

−9.8634
−9.3514

−9.8739
−9.5646

−9.8830
−9.7268

3π
4

−0.8213
−0.4274

−0.6276
−0.4719

−0.3820
−0.4211

−0.3300
−0.3754

−0.2874
−0.3223

−0.2675
−0.2923

−0.2542
−0.2707

−0.2430
−0.2521

π −1.4182
−1.3492

−1.4998
−1.4628

−1.6106
−1.6033

−1.6346
−1.6311

−1.6537
−1.6524

−1.6623
−1.6616

−1.6677
−1.6674

−1.6721
−1.6719

− 3π
4

−0.0680
−0.3663

−0.3301
−0.4309

−0.6887
−0.6376

−0.7726
−0.7211

−0.8455
−0.8081

−0.8814
−0.8554

−0.9064
−0.8893

−0.9282
−0.9189

−π
2

10.4161
4.5282

10.5704
5.8257

10.7118
8.4380

10.7251
9.2091

10.7267
9.8918

10.7230
10.2090

10.7183
10.4080

10.7126
10.5559

n=5

π
2

−9.5634
−3.4602

−9.6416
−4.8099

−9.7772
−7.5231

−9.8201
−8.2987

−9.8662
−8.9856

−9.8945
−9.3161

−9.9182
−9.5370

−9.9438
−9.7208

3π
4

−0.6762
−0.4025

−0.5682
−0.4541

−0.3820
−0.4211

−0.3243
−0.3717

−0.2637
−0.3046

−0.2277
−0.2601

−0.1985
−0.2229

−0.1682
−0.1845

π −1.4762
−1.4054

−1.5249
−1.4878

−1.6106
−1.6033

−1.6372
−1.6337

−1.6647
−1.6634

−1.6805
−1.6799

−1.6929
−1.6926

−1.7049
−1.7048

− 3π
4

−0.2574
−0.4326

−0.4102
−0.4689

−0.6887
−0.6376

−0.7813
−0.7279

−0.8833
−0.8402

−0.9475
−0.9140

−1.0022
−0.9773

−1.0623
−1.0459

−π
2

10.5496
4.2865

10.6201
5.6995

10.7118
8.4380

10.7292
9.1965

10.7343
9.8497

10.7309
10.1505

10.7225
10.3403

10.7064
10.4830
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Table 3. Effect of Young’s Modulus on σ
(1)
θθ / p at the poles (θ = ∓π/2, π,∓3π/4) around the circular hole for some

power-law exponents for two cases of q/E0 for Problem 2.

σ
(1)
θθ / p|q/E0=0

σ
(1)
θθ / p|q/E0=0.005

E1/E0

θ

0.1 0.2 1 2 5 10.0 20.0 50.0

n=1/2

π
2

−39.1445
−25.6426

−35.2383
−23.5418

−9.7772
−7.5231

1.1659
1.0163

9.4515
8.6470

11.7338
11.1805

12.4660
12.1594

12.6975
12.5700

3π
4

−7.0042
−4.9999

−6.2138
−4.5207

−0.3820
−0.4211

3.0236
2.4677

6.1846
5.6151

7.1449
6.7853

7.4615
7.2662

7.5627
7.4820

π 5.8521
3.2656

4.8861
2.7172

−1.6106
−1.6033

−4.7351
−4.2046

−7.5083
−6.9741

−8.3512
−8.0156

−8.6289
−8.4470

−8.7175
−8.6424

− 3π
4

−11.1353
−7.5871

−9.7658
−6.7931

−0.6887
−0.6376

3.2063
2.6328

6.3309
5.7575

7.2341
6.8756

7.5269
7.3330

7.6197
7.5396

−π
2

−13.3695
−8.5353

−10.3517
−6.6979

10.7118
8.4380

20.6986
17.4130

28.8777
26.3851

31.2854
29.7941

32.0882
31.2909

32.3482
32.0200

n=2

π
2

−55.6655
−30.3309

−41.4503
−25.3962

−9.7772
−7.5231

1.9816
1.6873

15.3965
13.7519

23.8236
22.0839

30.6796
29.2328

37.3917
36.4829

3π
4

−9.2368
−5.9533

−7.1800
−4.9591

−0.3820
−0.4211

3.2185
2.6117

8.3916
7.4512

12.3932
11.4601

16.1929
15.4104

20.5111
20.0019

π 10.5873
4.9362

6.7699
3.4684

−1.6106
−1.6033

−4.8501
−4.2806

−8.9645
−8.1362

−11.9941
−11.2005

−14.8569
−14.2056

−18.1316
−17.7144

3π
4

−20.8360
−11.9120

−13.7179
−8.7856

−0.6887
−0.6376

3.2631
2.6603

7.3706
6.5536

9.8148
9.0854

11.7525
11.1933

13.5995
13.2678

−π
2

−34.9843
−18.8343

−19.6794
−11.8330

10.7118
8.4380

20.7049
17.2982

31.1970
27.8379

37.1885
34.4471

41.6008
39.6146

45.3589
44.2391

n=5

π
2

−55.0559
−28.5379

−41.0178
−24.6642

−9.7772
−7.5231

2.0538
1.7446

15.7377
13.9828

24.5253
22.5518

31.9333
30.1342

39.6330
38.3081

3π
4

−9.0466
−5.7289

−7.1050
−4.8625

−0.3820
−0.4211

3.2260
2.6140

8.4655
7.4767

12.6682
11.6186

16.9402
15.9634

22.4267
21.6611

π 10.5242
4.5525

6.7107
33.283

−1.6106
−1.6033

−4.8430
−4.2710

−8.8741
−8.0203

−11.7866
−10.9287

−14.5537
−13.7916

−17.8236
−17.2580

− 3π
4

−21.8256
−11.9376

−13.9717
−8.8028

−0.6887
−0.6376

3.2430
2.6395

7.2238
6.3886

9.4805
8.7056

11.1702
10.5373

12.6108
12.1898

−π
2

−37.0866
−18.9981

−20.3941
−12.0399

10.7118
8.4380

20.6215
17.2055

30.7641
27.3072

36.3613
33.4052

40.2880
37.9849

43.1439
41.6715

ratio and the power-law exponent are more in the case
where the presence of the initial stresses.

• The normalized tangential stresses are affected more
by the use of graded elements in Problem 2 than in
Problem 1.
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